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STRATEGIC LIQUIDITY PROVISION IN LIMIT ORDER MARKETS

BY KERRY BACK AND SHMUEL BARUCH1

We characterize and prove the existence of Nash equilibrium in a limit order market
with a finite number of risk-neutral liquidity providers. We show that if there is suffi-
cient adverse selection, then pointwise optimization (maximizing in p for each q) in a
certain nonlinear pricing game produces a Nash equilibrium in the limit order market.
The need for a sufficient degree of adverse selection does not vanish as the number
of liquidity providers increases. Our formulation of the nonlinear pricing game en-
compasses various specifications of informed and liquidity trading, including the case
in which nature chooses whether the market-order trader is informed or a liquidity
trader. We solve for an equilibrium analytically in various examples and also present
examples in which the first-order condition for pointwise optimization does not define
an equilibrium, because the amount of adverse selection is insufficient.

KEYWORDS: Market microstructure, limit orders, liquidity, market makers, dealers,
trading game, nonlinear pricing.

1. INTRODUCTION

IN RECENT YEARS, the role of designated market makers has diminished, as
security exchanges have moved to the electronic limit order book format. In
an electronic limit order book, some market participants submit limit orders
because they want to make specific transactions; others hope to profit from
providing liquidity and hence play the role previously played by designated
market makers. In this paper, we study the game played by risk-neutral liq-
uidity providers who submit limit orders in anticipation of a marketable order
arriving from a trader who wants to make a specific transaction.

According to Treynor (1971), “the essence of market making, viewed as a
business, is that in order for the market maker to survive and prosper, his gains
from liquidity-motivated transactors must exceed his losses to information-
motivated transactions.” This observation underlies most of the theory of mar-
ket microstructure. Consistent with that theory, we assume that the trader de-
siring to make a specific transaction may either have information or may be
liquidity motivated (or both). A special case of the model we study was stud-
ied earlier by Biais, Martimort, and Rochet (2000, 2012). In their model, the
trader desiring to make a specific transaction has private information about
the asset value, constant absolute risk aversion (CARA) utility, and an endow-
ment of the asset that is also private information. In another example of our
model, nature chooses whether the trader is an informed trader or a liquidity-
motivated trader. This is a canonical example in market microstructure theory
(e.g., Glosten and Milgrom (1985)).

We show that the first-order condition for pointwise optimization in a certain
nonlinear pricing game defines an equilibrium under certain circumstances.

1We thank various anonymous referees for very helpful comments.
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The essence of our sufficient conditions is that the adverse selection faced by
the liquidity providers should be sufficiently high. In the CARA example, the
precise condition is that the elasticity of the expected gain from trade, as a
function of the reciprocal of the hazard rate of the trader’s type, should ex-
ceed 1. In a specific example of the “informed or liquidity trader” model, we
show that our sufficient condition is equivalent to a sufficiently high probability
of nature choosing the informed trader.

In a limit order market, the marginal price paid by a market buy order must
be nondecreasing in the quantity of the order. This structure imposes possibly
binding constraints on the liquidity providers. For example, a monopolist liq-
uidity provider who is unconstrained in his pricing schedule will want to offer
quantity discounts in certain circumstances (Maskin and Riley (1984), Biais,
Martimort, and Rochet (2000)), which is impossible in a limit order market.
Not surprisingly, the sufficient condition we present for pointwise optimiza-
tion to define an equilibrium for an oligopoly is related to, though distinct
from, the condition given in Biais, Martimort, and Rochet (2000) for a monop-
olist’s optimum in a limit order market to be pointwise optimal. Both require
the conditional expectation of the asset value to be sufficiently sensitive to the
type of the trader submitting a marketable order.

The requirement that there should be sufficient adverse selection does not
vanish as the number of liquidity providers increases. In a specific version of
the CARA model in which there is insufficient adverse selection (Example 1C
in Section 6), the solution of the first-order condition is not an equilibrium, re-
gardless of the number of liquidity providers.2 In an example of the informed
or liquidity trader model (Example 2A in Section 6), the required probabil-
ity of facing an informed trader actually increases as the number of liquidity
providers increases.

We do not have a general answer to the question of whether an equilibrium
of any sort exists when there is a low degree of adverse selection. However, it
seems likely that some assumption about adverse selection is needed in gen-
eral. Consider the following simple example (we thank Dan Bernhardt for this
example). Suppose nature chooses whether the trader submitting a marketable
order is informed or liquidity motivated. Suppose that if the liquidity moti-
vated trader wants to buy, then he wants to buy q̃ shares regardless of the cost,
where q̃ is a random variable with support [0�K] for some K <∞. Suppose
also that the asset value, which is known to the informed trader, has a distri-
bution with unbounded support. Then liquidity providers will not offer more
than K shares in aggregate, because shares at a depth exceeding K can only
be sold to the informed trader, ensuring losses. However, if the total number
of shares offered is less than or equal to K, then anyone offering shares can

2This example is a counterexample to the existence result of Biais, Martimort, and Rochet
(2000), acknowledged in Biais, Martimort, and Rochet (2012).
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make higher expected profits by offering the same number of shares at an ap-
proximately infinite price, ensuring that, with probability near 1, they are only
sold to the liquidity-motivated trader at an approximately infinite profit. Thus,
there is no equilibrium. The problem is that there is insufficient adverse selec-
tion at very high prices. A similar issue arises in Glosten’s (1994) analysis of a
competitive limit order book. Glosten’s Assumption 2 rules out the possibility
that extreme marginal valuations might only come from uninformed traders
(see the example in Glosten (1994, p. 1137)).

In the context of the CARA model, the first-order condition for pointwise
optimization is equivalent to a differential equation derived by Biais, Marti-
mort, and Rochet (2000). Our sufficient conditions are different from those
of Biais, Martimort, and Rochet (2012), even for the CARA model. As an
example of the difference, we show that the first-order condition (FOC) de-
fines an equilibrium when the agent’s type in the CARA model is normally
distributed and there is sufficient adverse selection. The CARA model with
normal distributions is an important example in market microstructure (e.g.,
Glosten (1989, 1994)). For several reasons, the sufficient conditions in Biais,
Martimort, and Rochet (2012) do not include normal distributions. The most
important of these reasons is that their approach is based on

some conditions ⇒ solution of FOC is convex

⇒ solution of FOC is an equilibrium.

In the normal case, the solution to the first-order condition is strictly concave,
yet, it is nevertheless an equilibrium. In the CARA–Normal model, our suffi-
cient condition in terms of adverse selection takes a particularly simple form.
We show that the elasticity condition is satisfied if the variance of private infor-
mation exceeds the variance of risk-adjusted inventory risk. This is equivalent
to the beta in the projection of the asset value on the trader’s type being larger
than 1/2 (a similar condition is needed for the monopolist’s optimum in this
model to be pointwise optimal; the proof of Lemma 2 in Appendix A uses the
condition β > 0�345). Section 4 discusses the relation of the sufficient condi-
tions of Biais, Martimort, and Rochet (2012) to our elasticity condition.

2. MODEL

We consider a game among n strategic traders (liquidity providers). These
traders simultaneously submit collections of limit orders as defined below.
Then an order arrives to the market from an (n+ 1)th trader. This order ex-
ecutes against the limit orders and thereby determines the quantities traded
and the cash transfers made. The cash transfers are based on discriminatory
pricing: a marketable order executes against existing limit orders at their limit
prices. After the marketable order is executed, the liquidation value ṽ of the
asset is revealed. The profits of the traders are thereby determined. We assume
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the n traders are risk neutral, though the (n+ 1)th trader may be risk averse.
We also assume E|ṽ|<∞.

For the sake of simplicity, and without loss of generality, we focus on the
offer side of the market. The liquidity providers are really playing two games
simultaneously: one in which they make bids to buy shares and one in which
they offer shares to sell. These games are not truly separable, because bids
and offers could cross, causing execution before the (n+ 1)th trader arrives.
Of course, crossing cannot occur with symmetric strategies. Absent crossing—
that is, assuming all offer prices are higher than all bid prices—we assume
the decision of the (n + 1)th trader of whether to buy and how much to buy
depends only on the prices at which shares are offered and does not depend
on the profile of bids of the liquidity providers. Likewise, we assume the selling
decision of the (n+1)th trader depends only on the prices at which he can sell.
These assumptions are satisfied in each of the three examples we will analyze.
Under these assumptions, a symmetric equilibrium of the pair of games must
have the property that the profile of bids is a Nash equilibrium in the bidding
game and the profile of offers is a Nash equilibrium in the offering game. We
analyze the Nash equilibrium in the offering game.

A collection of limit orders can be modeled as a transfer schedule Ti, where,
for q > 0, Ti(q) is the cash transfer required by trader i in order to supply
q shares. A transfer schedule is defined to be a lower semicontinuous con-
vex function Ti : R+ → R ∪ {∞} with Ti(0) = 0. If Ti(q) = ∞, then the trader
is refusing to supply q shares at any price. As discussed by Biais, Martimort,
and Rochet (2000), convexity guarantees that the transfer schedule can be in-
terpreted as a limit order book. Specifically, convexity implies that there is a
unique right-continuous nondecreasing function Pi : R+ → R ∪ {∞} such that
Ti(q) = ∫ q

0 Pi(x)dx for all q (Rockafellar (1970)). This function is the right-
hand derivative of Ti, with Pi(q)= ∞ if Ti(q)= ∞. The price Pi(q) is the limit
price on the marginal share offered by trader i at a depth of q shares. We call
Pi the price function associated with Ti.

Instead of studying the transfer schedule, we are going to work primarily with
the associated offer curve. An offer curve is a right-continuous nondecreasing
function S : R → R+ ∪ {∞}. The quantity S(p) is the number of shares offered
at prices less than or equal to p. The offer curve Si associated with Ti is the
right-continuous inverse of the price function Pi associated with Ti. It is defined
by Si(p) = inf{q | Pi(q) > p}. The offer curve Si can have discontinuities. If
Si(p)− limy↑p Si(y)= Δ > 0, then there is a discrete offer of size Δ at p. The
offer is not all or nothing: trader i is offering Δ shares or fewer at price p; thus,
supply is really a correspondence.

Given an offer curve Si, we can define the transfer schedule with which Si is
associated as Ti(q)= ∫ q

0 Pi(x)dx, where Pi is defined as Pi(x)= inf{p | Si(p) >
x}. So, Si, Pi, and Ti are equivalent representations of a strategy. Also, a trans-
fer schedule is strictly convex if and only if the associated price function is



STRATEGIC LIQUIDITY PROVISION 367

strictly increasing, which is equivalent to the associated offer curve being con-
tinuous. As in Biais, Martimort, and Rochet (2000), let T−i denote the infimal
convolution of the Tj for j �= i, meaning that

T−i(q)= min
{∑
j �=i
Tj(qj)

∣∣∣∣
∑
j �=i
qj = q� (∀j)qj ≥ 0

}
�

The function T−i is a transfer schedule, and the minimum in its definition is
attained for each q. Let P−i denote the price function and let S−i denote the
offer curve associated to T−i.

Let Qi denote the random quantity transacted by trader i for i = 1� � � � � n.
The transactions are with the (n + 1)th trader. We do not regard the (n +
1)th trader as a strategic trader (i.e., as a participant in the game), though it
would be possible to do so, at least in our first example (the CARA case). How
(Q1� � � � �Qn) depends on the profile of offer curves is part of the definition
of the game played by the n strategic traders. This is specified below in three
different examples.

Trader i wants to maximize

E
[
Ti(Qi)− ṽQi

] = E

∫ ∞

0

[
Pi(qi)− ṽ]1{Qi>qi} dqi(1)

=
∫ ∞

0
E
[[
Pi(qi)− ṽ]1{Qi>qi}

]
dqi�

where 1A denotes the zero–one indicator function of an eventA. A Nash equi-
librium is a profile (T1� � � � �Tn) of transfer schedules such that Ti maximizes (1)
for each i, taking Tj as given for j �= i. Given the one-to-one correspondences
between transfer schedules, price functions, and offer curves, we can equiva-
lently define Nash equilibrium in terms of profiles of price functions or profiles
of offer curves.

ASSUMPTION 1: There exists a function u : R × [0�∞] → R that is absolutely
continuous on R × [0�∞) and has the property that for all i and all profiles
(T1� � � � �Tn) such that S−i is continuous,

E
[[
Pi(qi)− ṽ]1{Qi>qi}

] = u(Pi(qi)� qi + S−i
(
Pi(qi)

))
�

Absolute continuity means that there exist functions g and h such that

u(p�q)= u(0� q)+
∫ p

0
g(x�q)dx= u(p�0)+

∫ q

0
h(p�y)dy

for each (p�q). We will write up for g and uq for h. The partial derivatives of u
exist almost everywhere, and when they do, they equal up and uq. We require
u to be defined for q= ∞, because ∞ may be in the range of S−i.
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The condition that S−i is continuous means that there are no flats (discrete
orders) in the offer curves of other liquidity providers. When optimizing (1),
we will allow trader i to post discrete orders if he so chooses. However, by
relying on Assumption 1, we are implicitly limiting our search for equilibria to
those in which there are no discrete orders. Thus, we are limiting our search to
equilibria in which the nonincreasing marginal price constraint is not binding.
To generalize the model, we would need to consider tie-breaking rules when
multiple traders post discrete limit orders and some or all of those orders are
only partially filled.

Assumption 1 holds in the CARA model (Example 1), but it is also more
general, as Examples 2 and 3 illustrate. Example 2 captures the informed
trader/liquidity trader dichotomy in the earlier quote from Treynor (1971).
That dichotomy is standard in the market microstructure literature (e.g., Kyle
(1985), Glosten and Milgrom (1985), Back and Baruch (2007)). Example 3 ap-
pears in Rock (1990) and Sandås (2001). We study specific versions of these
examples in Section 6.

EXAMPLE 1—CARA Investor: Suppose the marketable order comes from
an investor with constant absolute risk aversion α who has a random en-
dowment w̃ of the asset and a private signal z̃. Assume ṽ = z̃ + ε̃, where
ε̃ is normally distributed, independent of z̃ and w̃, and has mean zero. Set
γ = α var(ε̃). This investor chooses q to maximize J(q� w̃� z̃)− T(q), where J
is the certainty equivalent defined as

J(q�w�z)= (q+w)z− 1
2
γ(q+w)2�

Set θ̃ = z̃ − γw̃. Letting Q denote an optimal trade size for the investor and
letting (Q1� � � � �Qn) denote an optimal allocation of the trade among the limit
order traders, we have, for any qi,

Qi > qi ⇔ Jq
(
qi + S−i

(
Pi(qi)

)
� w̃� z̃

)
>Pi(qi)

⇔ θ̃ > Pi(qi)+ γ[
qi + S−i

(
Pi(qi)

)]
�

Assume the support of θ̃ is an interval, possibly extending to −∞ and/or +∞,
and assume θ̃ has a density function f that is positive on the interior of the
interval. Define a function v by v(θ)= E[ṽ | θ̃= θ]. Define u(p�∞)= 0 and

u(p�q)=
∫ ∞

p+γq

(
p− v(θ))f (θ)dθ(2)

for q <∞. Assumption 1 holds in this example for this function u.
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EXAMPLE 2—Informed or Noise: Suppose the (n+ 1)th trader is randomly
selected as either an informed trader or a liquidity (noise) trader. Assume the
informed trader has observed the realization of ṽ and buys all quantities of-
fered at prices less than ṽ. We allow either a continuous or a discrete distri-
bution for ṽ. Let F denote the distribution function of ṽ and let v̄ denote the
mean of ṽ. Conditional on the informed trader being chosen,

E
[[
Pi(qi)− ṽ]1{Qi>qi}

] = E
[(
Pi(qi)− ṽ)1{ṽ>Pi(qi)}

]
(3)

=
∫ ∞

Pi(qi)

(
Pi(qi)− v)dF(v)�

Assume the liquidity trader submits a limit order for q̃ shares at limit price
p̃. A negative q̃ represents a sell order. To include the possibility of a market
buy order, we can allow p̃ = ∞ with positive probability. We assume that p̃
and q̃ are independent of ṽ and independent of each other conditional on the
sign of q̃. LetG denote the distribution function of p̃ conditional on q̃ > 0 and
let H denote the distribution function of q̃ conditional on q̃ > 0. Conditional
on the liquidity trader being chosen,

E
[[
Pi(qi)− ṽ]1{Qi>qi}

] = (
Pi(qi)− v̄)E[1{Qi>qi}]

= (
Pi(qi)− v̄)E[1{p̃>Pi(qi)�q̃>qi+S−i(Pi(qi))}]�

Due to the assumed independence, this equals
(
Pi(qi)− v̄)(1 −G(

Pi(qi)
))(

1 −H(
qi + S−i

(
Pi(qi)

)))
�(4)

Let φ denote the probability the informed trader is chosen to trade, and
assume the uninformed liquidity trader is chosen and submits a buy order (q̃ >
0) with probability (1 −φ)/2. Combining (3) and (4) shows that Assumption 1
holds with

u(p�q)= φ

∫ ∞

p

(p− v)dF(v)

+ 1 −φ
2

(p− v̄)(1 −G(p))(1 −H(q))�
taking

u(p�∞)=φ
∫ ∞

p

(p− v)dF(v)�

EXAMPLE 3—Inelastic Demand: Assume a market order of a size q̃ that
does not depend on the transfer schedules. Let F denote the distribution func-
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tion of q̃ and assume it has a density f . Set v(q)= E[ṽ | q̃ = q]. Assumption 1
holds for u(p�∞)= 0 and

u(p�q)=
∫ ∞

q

(
p− v(x))f (x)dx

for q <∞.

3. THE FIRST-ORDER CONDITION

It follows from Assumption 1 that, when S−i is continuous, trader i chooses
Pi to maximize

∫ ∞

0
u
(
Pi(qi)� qi + S−i

(
Pi(qi)

))
dqi�(5)

Suppose that Sj = S∗ for all j �= i and some offer curve S∗. Suppose S∗ is differ-
entiable with derivative s∗. Then the first-order condition for pointwise maxi-
mization of (5)—maximizing in p for each qi—is

up
(
p�q+ (n− 1)S∗(p)

) + (n− 1)s∗(p)uq
(
p�q+ (n− 1)S∗(p)

) = 0�(6)

Imposing the first-order condition at q= S∗(p) yields

up
(
p�nS∗(p)

) + (n− 1)s∗(p)uq
(
p�nS∗(p)

) = 0�(7)

This is a differential equation that should hold for any symmetric equilibrium
in which the optimum for each liquidity provider is pointwise optimal. In the
setting of Example 1, this differential equation is equivalent to the differen-
tial equation (43) of Biais, Martimort, and Rochet (2000). The equivalence
is demonstrated in Appendix B (thus, the differential equation (43) of Biais,
Martimort, and Rochet (2000) characterizes equilibrium only when the liquid-
ity providers’ strategies are pointwise optimal).

Denoting the aggregate offer curve by Q(p)= nS∗(p) and setting λ= (n−
1)/n, the differential equation (7) is equivalent to

up
(
p�Q(p)

) + λuq
(
p�Q(p)

)dQ(p)
dp

= 0�(8)

There are monopoly and competitive versions of this equation. Pointwise max-
imization by a monopolist produces the first-order condition up(p�Q(p))= 0.
This is the special case n= 1 ⇔ λ= 0 of (8). Perfect competition means zero
expected profits, that is, u(p�Q(p))= 0. This equation implies that prices are
tail expectations, as discussed in Glosten (1994). Differentiating it with respect
to p produces equation (8) with λ= 1.
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4. SECOND-ORDER CONDITIONS

In the objective function (5), adjusting the limit price p at any depth qi has
two effects: there is a direct effect measured by the partial derivative up and an
indirect effect via the loss of priority in the limit order book. The cost of losing
priority is the term (n− 1)s∗(p)uq(p�qi + (n− 1)S∗(p)) in the first-order con-
dition (6). Along an equilibrium aggregate offer curve q = nS∗(p), we expect
that up(p�q) > 0 and uq(p�q) < 0. The condition up(p�q) > 0 means that a
monopolist would want to charge a higher price. The condition uq(p�q) < 0
means that an increase in the quantity supplied by other limit order traders at
prices at or below p (a reduction in priority for trader i) reduces the expected
profit of trader i. With up > 0 and uq < 0, the differential equation (7) implies
that the offer curve has a positive slope (recall that it cannot be negative, by
the nature of a limit order book). The sign of

up(p�q)+ (n− 1)s∗(p)uq(p�q)(9)

to the left and right of the solution of the differential equation is critical for
determining whether the solution is an equilibrium.

THEOREM 1: Assume S∗ and pask satisfy the following statement: S∗ is a con-
tinuous nondecreasing function that is positive and continuously differentiable for
all p>pask and is equal to zero for all p≤ pask. Assume

up(p�q)+ (n− 1)s∗(p)uq(p�q)
{≥ 0� if q≥ nS∗(p),

≤ 0� if q≤ nS∗(p),(10)

for all p and all q≥ 0, where

s∗(p)=
⎧⎨
⎩
dS∗(p)
dp

� if p>pask,

0� otherwise.
(11)

Then the strategy profile (S∗� � � � � S∗) is a Nash equilibrium.

Condition (10) implies that S∗ satisfies the differential equation (7). The hy-
pothesis (10) involves S∗. Thus, it does not allow us to verify the existence
of equilibrium without first solving the differential equation. The following
corollary also makes assumptions regarding the solution of the differential
equation, but it provides a practical recipe for verifying condition (10). Be-
cause the solution of the differential equation lies between the competitive and
monopoly solutions, condition (a) holds if up(p�q)≥ 0 for all quantities above
the monopoly quantity and condition (b) holds if uq(p�q)≤ 0 for all quantities
less than the competitive quantity. As the examples will illustrate, these are
mild assumptions. Assumptions (c) and (d) are motivated by examples with
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bounded distributions. The hypotheses of those conditions typically hold out-
side the support of the distribution, where u≡ 0; hence up = 0. They are also
unrestrictive assumptions. Condition (e) holds if the ratio up(p�q)/uq(p�q) is
a decreasing function of q. It is the most restrictive assumption and is discussed
further below.

COROLLARY 1: Assume S∗ and pask satisfy the following statement: S∗ is a con-
tinuous nondecreasing function that is positive and continuously differentiable for
all p> pask and is equal to zero for all p≤ pask. Assume S∗ satisfies the differen-
tial equation (7) for all p > pask. Define s∗ by (11). Assume up(p�nS∗(p)) > 0
and uq(p�nS∗(p)) < 0 for all p such that s∗(p) > 0. Also make the following
assumptions.

(a) If q > nS∗(p), then up(p�q)≥ 0.
(b) If q < nS∗(p), then uq(p�q)≤ 0.
(c) If q < nS∗(p) and uq(p�q)= 0, then up(p�q)≤ 0.
(d) If q < nS∗(p) and s∗(p)= 0, then up(p�q)≤ 0.
(e) For all p such that s∗(p) > 0,

up(p�q)

uq(p�q)

⎧⎪⎪⎨
⎪⎪⎩

≤ up(p�nS
∗(p))

uq(p�nS∗(p))
� if q > nS∗(p) and uq(p�q) < 0,

≥ up(p�nS
∗(p))

uq(p�nS∗(p))
� if q < nS∗(p) and uq(p�q) < 0.

(12)

Then the strategy profile (S∗� � � � � S∗) is a Nash equilibrium.

We can also derive a necessary condition for equilibrium in terms of the sign
of (9), which is expressed in the following theorem.

THEOREM 2: Assume S∗ and pask satisfy the following statement: S∗ is a con-
tinuous nondecreasing function that is positive and continuously differentiable for
all p> pask and is equal to zero for all p≤ pask. Assume S∗ satisfies the differen-
tial equation (7) for all p > pask. Define s∗ by (11). Assume there exists p̂ > pask

such that s∗ is positive at p̂ and a neighborhood K of (p̂�nS∗(p̂)) such that

(p�q) ∈K and q > nS∗(p)(13a)

⇒ up(p�q)+ (n− 1)s∗(p)uq(p�q) < 0

or

(p�q) ∈K and q < nS∗(p)(13b)

⇒ up(p�q)+ (n− 1)s∗(p)uq(p�q) > 0�

Then the strategy profile (S∗� � � � � S∗) is not a Nash equilibrium.
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Condition (13) typically occurs when the sign is reversed in assumption (e)
of Corollary 1. We state this as a corollary to Theorem 2. Example 1C in the
next section applies the corollary.

COROLLARY 2: Assume S∗ and pask satisfy the following statement: S∗ is a con-
tinuous nondecreasing function that is positive and continuously differentiable for
all p>pask and is equal to zero for all p≤ pask. Assume S∗ satisfies the differential
equation (7) for all p>pask. Define s∗ by (11). Assume there exists p̂ > pask such
that s∗(p̂) > 0, u is continuously differentiable on a neighborhood of (p̂�nS∗(p̂)),
uq(p̂�nS

∗(p̂)) < 0, and

d

dq

up(p�q)

uq(p�q)
> 0(14)

evaluated at p= p̂ and q = nS∗(p̂). Then the strategy profile (S∗� � � � � S∗) is not
a Nash equilibrium.

To illustrate conditions (12) and (14), consider Example 1. Set x= p+ γq.
We have

up(p�q)= (
v(x)−p)

f (x)+ 1 − F(x)�
uq(p�q)= γ

(
v(x)−p)

f (x)�

Set R(x) = (1 − F(x))/f (x) when f (x) > 0. For x in the support of θ̃, we
have

d

dq

(
up(p�q)

uq(p�q)

)
< 0 ⇔ (

p− v(x))R′(x)+R(x)v′(x) > 0�(15)

Biais, Martimort, and Rochet (2012) assume R′ < 0. It is actually easier to
satisfy the second-order condition (10) when R′ ≥ 0. This includes exponential
distributions, for which R is constant, as well as hyperexponential distributions
and others. When R′ ≥ 0, condition (15) holds on the support of θ̃, provided
only that v is monotone and p > v(x), which is certainly true whenever p is
above the competitive price (the upper-tail expectation). The same is true in
Example 3, replacing θ̃ with q̃. See Examples 1A and 3A for more details.

Now consider the case that R′ < 0. Then, fixing p, R is decreasing in q and
p − v is also decreasing in q, so we can invert the function q �→ R(p + γq)
and write the gain from trade p− v as a increasing function of R. Define the
elasticity

d log(p− v)
d logR

≡ ∂ log(p− v(p+ γq))/∂q
∂ logR(p+ γq)/∂q �(16)



374 K. BACK AND S. BARUCH

When p> v(x) and R′ < 0, then the equivalent conditions in (15) are equiva-
lent to this elasticity being larger than 1. This is true when the expected asset
value v(θ) is relatively sensitive to the trader’s type θ, in other words, when
there is a relatively high degree of adverse selection.

Biais, Martimort, and Rochet (2012) give alternative sufficient conditions
for the differential equation (7) to define an equilibrium, in the context of
the CARA model. Their results are all based on their lemma that shows that
the solution of the differential equation (7) is an equilibrium if S∗ is convex.
Suppose S∗ satisfies (7), and set

ω(p�q)= up(p�q)+ (n− 1)s∗(p)uq(p�q)�(17)

Under the assumptions of Biais, Martimort, and Rochet (2012), which include
v′ < 1 and R′ < 0, convexity of S∗ implies that ω(p�q)/f (p+ γq) is a decreas-
ing function of p at each (p�q) such that s∗(p) > 0 and p > v(p + γq). So,
in the usual qp plane, ω(p�q) is negative above the graph of nS∗ and positive
below, at least down to the price p= v(p+γq), which is below the competitive
price (the upper-tail expectation) and beyond which deviations cannot be prof-
itable. Being negative above and positive below is the same as being negative
to the left and positive to the right, which is the assumption in our Theorem 1.
However, Theorem 1 is more general than convexity of S∗. We show in the next
section that it applies when θ̃ is normally distributed and there is sufficient ad-
verse selection, a setting in which S∗ is concave.

To deduce that S∗ is convex, Biais, Martimort, and Rochet (2012) impose
assumptions on exogenous variables. The most straightforward of those results
is their Corollary 1, which assumes that v and R are concave. Concavity of v
and R combined with the hypotheses v′ > 0 and R′ < 0 implies that(

p− v(θ))R′(θ)+R(θ)v′(θ)(18)

is a decreasing function of θ at each (p�θ) such that p > v(θ). Biais, Mar-
timort, and Rochet (2012) assume there is a maximum type θ̄. The expres-
sion (18) is positive at θ̄ and hence positive at θ ≤ θ̄ if v(θ) < p < v(θ̄).
This means that the elasticity (16) is greater than 1 at all (p�q) such that
v(p+ γq) < p < v(θ̄). The boundary condition in Biais, Martimort, and Ro-
chet (2012) implies that the marginal price paid by the trader of type θ̄ is v(θ̄).
Therefore, under these hypotheses, the elasticity (16) is greater than 1 at all
prices at which transactions take place. However, the next section shows that
the elasticity can be greater than 1 even when v is linear and R is convex, which
is inconsistent with the hypotheses of both Corollary 1 and Proposition 1 of
Biais, Martimort, and Rochet (2012).

5. CARA–NORMAL EXAMPLE

This section analyzes Example 1 when the (n+ 1)th trader’s type is normally
distributed. Recall that we have θ̃ = z̃ − γw̃ and v(θ) = E[z̃ | θ̃ = θ]. Assume
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z̃ and w̃ are independent and normally distributed, and w̃ has zero mean.3 In
this circumstance, θ̃ is normally distributed, and θ̃, ṽ, and z̃ all have the same
means. Denote the common mean by v̄. We have v(θ)= v̄+β(θ− v̄), with

β= var(z̃)
var(z̃)+ var(γw̃)

�

Assume var(z̃) > var(γw̃), so 1/2<β< 1. This assumption implies a sufficient
degree of adverse selection, enabling us to establish that the elasticity (16) is
larger than 1. Denote the variance of θ̃ by σ2.

Recall that F and f denote the distribution and density functions of θ̃, and
R(x)= (1 − F(x))/f (x). Set x= p+ γq. We have

u(p�q)=
∫ ∞

x

(
p− v̄−β(y − v̄))f (y)dy(19)

= (p− v̄)(1 − F(x)) −βσ2f (x)�

using f ′(y)= −(y − v̄)f (y)/σ2 for the second equality. Note that

u(p�q) > 0 ⇔ p> v̄+ βσ2

R(x)
�

The right-hand side of the right-hand inequality is E[ṽ | θ̃ ≥ x]. The following
lemma is certainly known, but we provide a proof in the Appendix for com-
pleteness.

LEMMA 1: R is a decreasing convex function that satisfies

− R(x)

R′(x)
> x− v̄(20)

for all x. Moreover, R(v̄+ σ) > σ/2 and limx→∞(x− v̄)R(x)= σ2.

The inequality (20) is used below in conjunction with the assumption β > 1/2
to establish that the elasticity (16) is larger than 1.

LEMMA 2: For each 0 ≤ λ≤ 1, there exists pλ and a continuous nondecreasing
function Qλ such that Qλ is positive and satisfies the differential equation (8) for
all p > pλ and satisfies Qλ(p)= 0 for all p≤ pλ. Furthermore, Qa(p)≥Qb(p)
for all p when a > b. Also, up(p�Q0(p))= 0 for all p>p0 and u(p�Q1(p))= 0
for all p>p1.

3The (n+ 1)th trader shifts inventory risk to the liquidity providers due to their different risk
aversions. The zero-mean assumption implies that liquidity providers do not expect to end up
with either positive or negative inventory. The same assumption was made by Glosten (1989,
1994).
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FIGURE 1.—Aggregate offer curves in the CARA–Normal example. These are the aggregate
offer curves in Example 1 when θ̃ has a standard normal distribution and v(θ)= 3θ/4. The bot-
tom curve is the perfectly competitive solution, the middle curve is for n= 2, and the top curve is
the monopoly solution.

THEOREM 3: Set S∗(p) =Qλ(p)/n with λ= (n− 1)/n, where Qλ is defined
in Lemma 2. The profile (S∗� � � � � S∗) of offer curves is a Nash equilibrium.

The equilibrium aggregate offer curve is depicted in Figure 1. Note that
quantity is a concave function of price; equivalently, price is a convex func-
tion of quantity. This means that the third derivative of the transfer schedule
is positive.

6. ADDITIONAL EXAMPLES

In each example, we want to find a solution of the differential equation (7)
that satisfies the second-order conditions in Theorem 1 or Corollary 1. We
do this by solving the differential equation subject to the boundary conditions
(21) stated below. The practical motivation for these boundary conditions is
that they work, as the examples illustrate. An intuitive motivation for them
is as follows. Suppose there is a maximum quantity qmax that is transacted in
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equilibrium. A game in which each liquidity provider chooses the optimal price
at which to sell qmax/n is a Bertrand game. The price should be optimal under
the assumption of no supply response from other traders, meaning

up(p
max� qmax)= 0�(21a)

Also, because it is Bertrand, there should be zero expected profits at the quan-
tity qmax. This means

u(pmax� qmax)= 0�(21b)

In examples with bounded distributions, we find pmax and qmax by solving the
boundary conditions (21). We then solve the differential equation (7) backward
until we reach q = 0. In the setting of Example 1, the boundary conditions
(21) are equivalent to the boundary condition of Biais, Martimort, and Rochet
(2000); see Appendix B.

Notice that the boundary condition (21) is independent of n. So when dis-
tributions are bounded, we are looking for solutions of (7) that intersect at a
common point (pmax� qmax). The dependence on the parameter n implies that
the solutions are necessarily ordered, with supply being larger for larger n.

EXAMPLE 1A: In Example 1, assume that θ̃ is exponentially distributed with
parameter τ and that v is strictly monotone. Then the equivalent conditions in
(15) hold. This implies the second-order condition (10) in Theorem 1 at each
p such that s∗(p) > 0. Thus, a solution of the differential equation (7) that is
strictly increasing above pask is an equilibrium, provided only that up(p�q)≥ 0
for p < pask. For a specific example, take v(q)= βq for 0< β < 1. There is a
unique affine solution Qλ(p) = A + Bp of the differential equation (8) with
coefficients

A= − 1
τ[(1 − λ)βγ+ λγ] � B= 1 −β

βγ
�

The solution pask of Qλ(p
ask)= 0 satisfies

pask <
1

(1 −β)τ �

Given this fact, we can calculate that

p<pask ⇒ up(p�q)≥ 0�

Thus, setting S∗ = Qλ/n for λ = (n − 1)/n, the profile (S∗� � � � � S∗) is a Nash
equilibrium.
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EXAMPLE 1B: In Example 1, assume θ̃ is uniformly distributed on (0�1) and
v(x) = βx for all x, where 0 < β < 1. This example is also analyzed in Biais,
Martimort, and Rochet (2012). We have

u(p�q)= p(1 −p− γq)− β

2
[
1 − (p+ γq)2

]

if p + γq ≤ 1 and u(p�q) = 0 otherwise. Solving u(pmax� qmax) = up(p
max�

qmax)= 0 produces pmax = β and γqmax = 1 −β. There is a unique affine solu-
tion Qλ(p)=A+Bp of the differential equation (8) that satisfies Qλ(p

max)=
qmax. The coefficients of the solution are

γA= 1
1 −β−βλγB�

γB= (1 −β)(1 + λ)+ √
(1 −β)2(1 + λ)2 + 4λβ(2 −β)

2λβ
�

We takeQλ(p)= 0 for p<pask, where pask is defined byA+Bpask = 0. It does
not matter how Qλ is defined for p > pmax. The candidate equilibrium offer
curve is S∗(p) = Qλ(p)/n for λ = (n− 1)/n. One can verify directly that the
second-order condition (10) in Theorem 1 is satisfied, so (S∗� � � � � S∗) is a Nash
equilibrium.

EXAMPLE 1C: In Example 1, assume θ̃ is uniformly distributed on (0�1) and
v(x) = βx2 for 0 < β < 1/2. For convenience, take γ = 1. As in the previous
example, solving u= up = 0 produces pmax = β and qmax = 1−β. This example
satisfies all of the assumptions of Biais, Martimort, and Rochet (2000). How-
ever, it is a counterexample to Biais, Martimort, and Rochet (2000), because
the solution of the differential equation (7) does not define an equilibrium.

To understand why the solution is not an equilibrium, note that v′(θ) is ar-
bitrarily close to zero when θ is sufficiently small. As a result, the elasticity
(16) is not uniformly larger than 1; in other words, there is insufficient adverse
selection. Specifically, the conditions in (15) are equivalent, for p+ q < 1, to

q2 − 2(1 −p)q+p2 − (2 − 1/β)p < 0�

Given that β < 1/2, this condition fails at (p�0) for every p > 0. Thus, no
matter what n is and no matter what pask is in (0�pmax), the solution of the
differential equation starting at (pask�0) and passing through (pmax� qmax)must
satisfy the hypothesis of Corollary 2 at all sufficiently small p̂ > pask.

Because the hypothesis of Corollary 2 is satisfied for all n, the differential
equation does not define an equilibrium for any n. The competitive offer curve
in this example is

Q(p)=
√−3β2 + 12βp

2β
− 1/2 −p
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with pmax = β. It is the limit of the solutionsQλ of (8) as λ→ 1; however, these
solutions are not Nash equilibria for any n. It is an open question whether there
are any Nash equilibria in this example that converge to the competitive offer
curve.

EXAMPLE 2A: In Example 2, assume ṽ takes only two values, −1 and +1,
with probability 1

2 each. Assume that, conditional on q̃ > 0, p̃ and q̃ are inde-
pendent with q̃ being uniformly distributed on (0�1). Then

u(p�q)= −φ
2
(1 −p)+ − φ

2
(−1 −p)+

+ (1 −φ)p
2

(
1 −G(p))(1 − q)+

for all p and all q ≥ 0, where G is the distribution function of p̃ conditional
on q̃ > 0 and, as usual, a+ = max(0� a). For 0 < q < 1, u is linear in q, so
uq(p�q)= uq(p�nS∗(p)). This implies

up(p�q)+ (n− 1)s∗(p)uq(p�q)

= up(p�q)− up
(
p�nS∗(p)

)

= [
nS∗(p)− q]

(
1 −φ

2

)
d

dp

{
p

(
1 −G(p))}�

By Theorem 2, a necessary condition for S∗ to be an equilibrium offer curve is
that

d

dp

{
p

(
1 −G(p))} ≤ 0(22)

whenever s∗(p) > 0.
For a more specific example, assume G is the uniform distribution on (0�1).

Solving u(pmax� qmax) = up(p
max� qmax) = 0 produces pmax = 1 and qmax = (1 −

2φ)/(1 −φ). This is feasible for an equilibrium only when φ< 1/2. Thus, the
amount of adverse selection must be limited. For 0< λ≤ 1, the solution of the
differential equation (8) satisfying Q(pmax)= qmax is

Qλ(p)= 1
λ(1 −φ)

∫ 1

p

[
2(1 −φ)z− 1

]( z(1 − z)
p(1 −p)

)1/λ( 1
z(1 − z)

)
dz�(23)

Note that (22) is equivalent to p≥ 1/2 in this example.
Assume now that n= 2. Equation (23) simplifies for λ= 1/2 to

Q(p)= 1 − φ

1 −φ
(

1 + 2p
3p2

)
�
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Solving Q(pask)= 0 produces

pask = φ+ √
φ(3 − 2φ)

3(1 −φ) �

We have pask ≥ 1/2 if and only if φ ≥ 3/11. Thus, condition (22) holds for all
p > pask if and only if φ ≥ 3/11. Again, note the need to assume there is a
sufficient amount of adverse selection to obtain the second-order condition.
When 3/11<φ< 1/2, the second-order condition (10) in Theorem 1 is in fact
satisfied for each p, so S∗ =Q/2 is an equilibrium offer curve.

The minimum probability of an informed trader that implies pask ≥ 1/2 ac-
tually increases in n, as shown in Figure 2, from φ= 3/11 for n= 2 (λ= 1/2)
to φ= 1/3 for n= ∞ (λ= 1). Thus, if φ< 3/11, then the solution to the dif-
ferential equation (8) is not an equilibrium offer curve for any n.

FIGURE 2.—Adverse selection required in Example 2A. If the probability of facing an in-
formed trader is less than the value of φ shown, for λ = (n − 1)/n, then the solution of the
differential equation (8) is not an equilibrium offer curve. Thus, the required degree of adverse
selection is higher when there are more liquidity providers.
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EXAMPLE 3A: In Example 3, assume q̃ is exponentially distributed with pa-
rameter τ and v is strictly monotone. Then up ≥ 0 everywhere; in particular,
up(p�q) ≥ 0 whenever p < pask. Because (15) holds, the second-order condi-
tion (10) in Theorem 1 holds for each p such that s∗(p) > 0. Thus, a solu-
tion of the differential equation (7) that is strictly increasing above pask is an
equilibrium. For a specific example, take v(q) = βq. Then there is a unique
affine solution Qλ =A+ Bp of the differential equation (8), with coefficients
A= −1/(λτ) and B= 1/β, and pask = β/(λτ).

EXAMPLE 3B: In Example 3, assume q̃ is uniformly distributed on (0�1) and
v(q)= βq. In this case,

u(p�q)= p(1 − q)− β

2
(
1 − q2

)

if q < 1 and u(p�q) = 0 otherwise. Solving u(pmax� qmax) = up(p
max� qmax) = 0

produces qmax = 1. There is a unique affine solution Qλ(p) =A + Bp of the
differential equation (8) given by A = −1/λ and B = (1 + λ)/(βλ). For ev-
ery λ, the pmax satisfying Qλ(p

max) = qmax is pmax = β. Solving Qλ(p
ask) = 0

produces pask = β/(1 + λ). As usual, we take Qλ(p) = 0 for p ≤ pask and set
S∗ =Qλ/n for λ= (n− 1)/n. In this example, the ratio up(p�q)/uq(p�q) be-
ing decreasing in q is equivalent to p<β, so it holds along the aggregate offer
curve Qλ up to p = pmax. However, it is also easy to verify the sufficient con-
dition (10) of Theorem 1 directly, showing that (S∗� � � � � S∗) is a Nash equilib-
rium.

7. CONCLUSION

An open question is the nature of an equilibrium, if there is one, when the
second-order condition does not hold, as in Example 1C. Because the differen-
tial equation is equivalent to pointwise optimality, a natural conjecture is that
there may be an equilibrium with bids or offers for discrete quantities where
the nondecreasing marginal price constraint is binding. It seems quite likely
to us that equilibria of that sort will be in mixed strategies, with random limit
prices; otherwise, price cutting would push the outcome to the competitive
solution. Our formulation in Assumption 1 does not encompass discrete limit
orders from competitors, so a different approach will be required to investigate
these issues.

Under standard conditions, the solution Qλ of (8) converges to the competi-
tive solution as λ→ 1, equivalently, as n→ ∞. When Qλ is an equilibrium ag-
gregate offer curve, this implies convergence to competition as n→ ∞. How-
ever, as illustrated in Examples 1C and 2A, the failure of the solution of the
differential equation to define an equilibrium when there is insufficient adverse
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selection is not a “small n” issue. It is an open question whether the competi-
tive solution in such cases is the limit of any sequence of Nash equilibria.

APPENDIX A: PROOFS

PROOF OF THEOREM 1: Let T �= T ∗ be a transfer schedule and let P be the
price function associated to T . For all q≥ 0, we have

u
(
P∗(q)�q+ (n− 1)S∗(P∗(q)

)) − u(P(q)�q+ (n− 1)S∗(P(q)))(24)

=
∫ P∗(q)

P(q)

d

dp
u
(
p�q+ (n− 1)S∗(p)

)
dp

=
∫ P∗(q)

P(q)

ω
(
p�q+ (n− 1)S∗(p)

)
dp�

where ω is defined in (17). We want to show that

ω
(
p�q+ (n− 1)S∗(p)

){≥ 0� if p< P∗(q),
≤ 0� if p> P∗(q).(25)

This implies that (24) is nonnegative, so the integral over q is nonnegative,
implying that the deviation from T ∗ to T is unprofitable.

Consider p > P∗(q). Because P∗(q) = inf{y | S∗(y) > q}, we must have
S∗(p) > q. This implies nS∗(p) > q + (n − 1)S∗(p). From (10), this implies
ω(p�q+ (n− 1)S∗(p))≤ 0.

Now, consider p < P∗(q). Assume P∗ is continuous at q. Then there exists
x < q such that p < P∗(x). Because P∗(x) = inf{y | S∗(y) > x}, this implies
S∗(p) ≤ x < q. Thus, nS∗(p) < q + (n − 1)S∗(p) and (10) implies ω(p�q +
(n− 1)S∗(p))≥ 0.

The set of points at which P∗ is discontinuous is at most countable, so we
conclude that, for almost all q, (25) holds for all p. Thus, integrating (24) over
q shows that P∗ is an optimal response. Q.E.D.

PROOF OF COROLLARY 1: We want to verify (10). Define ω by (17). Con-
sider any q > nS∗(p). By assumption (a), ω(p�q) ≥ 0 if uq(p�q) ≥ 0 or
if s∗(p) = 0. If uq(p�q) < 0 and s∗(p) �= 0, then assumption (e) implies
ω(p�q) ≥ 0. Now, consider any q < nS∗(p). By assumption (b), ω(p�q) ≤ 0
if up(p�q) ≤ 0. Assume up(p�q) > 0. By assumption (d), s∗(p) > 0, and
by assumptions (b) and (c), uq(p�q) < 0. Therefore, assumption (e) implies
ω(p�q)≤ 0. Q.E.D.

PROOF OF THEOREM 2: Assume (13a) holds. Define ω by (17). There exists
an interval (p1�p2) containing p̂ and ε > 0 such that s∗(p) > ε andω(p�q) < 0
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whenever p1 ≤ p≤ p2 and nS∗(p) < q < nS∗(p)+ ε. Define ŝ(p)= s∗(p) for
p /∈ (p1�p2) and

ŝ(p)=
{
s∗(p)+ ε� if p1 ≤ p< (p1 +p2)/2,
s∗(p)− ε� if (p1 +p2)/2 ≤ p≤ p2 .

Define Ŝ(p) = ∫ p

−∞ ŝ(x)dx� We will show that Ŝ is a profitable deviation. Set
a= S∗(p1) and b= S∗(p2), and set P̂(q)= inf{p | Ŝ(p) > q}. Note that Ŝ(p) >
S∗(p) for p1 <p<p2, so P̂(q) < P∗(q) for a < q < b. The expected gain from
the deviation is

∫ b

a

[
u
(
P̂(q)�q+ S∗

−i
(
P̂(q)

)) − u(P∗(q)�q+ S∗
−i

(
P∗(q)

))]
dq

=
∫ b

a

∫ P̂(q)

P∗(q)
ω

(
p�q+ S∗

−i(p)
)
dpdq

= −
∫ b

a

∫ P∗(q)

P̂(q)

ω
(
p�q+ S∗

−i(p)
)
dpdq�

Note that a < q < b implies p1 ≤ P̂(q) ≤ P∗(q) ≤ p2. Also, P̂(q) < p < P∗(q)
implies S∗(p) ≤ q ≤ Ŝ(p). Thus, on the domain of integration, p1 ≤ p ≤ p2,
S∗(p) ≤ q ≤ Ŝ(p) ≤ S∗(p)+ ε, and ω(p�q+ S∗

−i(p)) < 0. When (13b) holds,
we can likewise define a profitable deviation via

ŝ(p)=
{
s∗(p)− ε� if p1 ≤ p< (p1 +p2)/2,
s∗(p)+ ε� if (p1 +p2)/2 ≤ p≤ p2. Q.E.D.

PROOF OF COROLLARY 2: Under these assumptions,

up(p�q)

uq(p�q)
>
up(p�nS

∗(p))
uq(p�nS∗(p))

= −(n− 1)s∗(p)

for q > nS∗(p) on a neighborhood of (p̂�nS∗(p̂)). This implies

up(p�q)+ (n− 1)s∗(p)uq(p�q) < 0�

so (13a) holds. Q.E.D.

PROOF OF LEMMA 1: Let F and f denote the distribution and density func-
tion of a normal (μ�σ2) random variable, and set R(x)= (1 −F(x))/f (x). We
have

f ′(x)
f (x)

= −x−μ
σ2

�(26)
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Using this fact and applying l’Hôpital’s rule to (x − μ)R(x) as (x − μ)(1 −
F(x))/f (x), we obtain limx→∞(x−μ)R(x)= σ2. Also

R′(x)= −1 +
(
x−μ
σ2

)
R(x)�(27a)

R′′(x)= −x−μ
σ2

+
(
x−μ
σ2

)2

R(x)+ 1
σ2
R(x)�(27b)

Now we show that R′ < 0. This is equivalent to
(
x−μ
σ2

)(
1 − F(x)) − f (x) < 0�(28)

The left-hand side of (28) is increasing in x, because its derivative is (1 −
F(x))/σ2 > 0. It tends to zero as x→ ∞, so it must be negative for all finite x.

The formulas (27) imply that R′′ > 0 if and only if (20) holds. So it remains
to show that R is convex, which is equivalent to

−
(
x−μ
σ2

)
f (x)+

(
x−μ
σ2

)2(
1 − F(x)) + 1

σ2

(
1 − F(x))> 0�(29)

The left-hand side of (29) is decreasing in x. In fact, the derivative is

2(x−μ)
σ4

(
1 − F(x)) − 2

σ2
f (x)= 2

σ2

(
x−μ
σ2

∫ ∞

x

f (y)dy − f (x)
)

<
2
σ2

(∫ ∞

x

y −μ
σ2

f (y)dy − f (x)
)

= 2
σ2

(
−

∫ ∞

x

f ′(y)dy − f (x)
)

= 0�

The left-hand side of (29) converges to zero as x→ ∞, so it must be positive
for all finite x.

Finally, note that

R(v̄+ σ)= 1 − F∗(1)
f ∗(1)

× σ = 0�6556795 × σ�

where F∗ and f ∗ denote the standard normal distribution and density func-
tions. Thus, R(v̄+ σ) > σ/2. Q.E.D.

PROOF OF LEMMA 2:
Step 1: λ= 1. First, we show that there exists pc such that u(pc�0)= 0. This

is equivalent to (pc − v̄)R(pc) = βσ2. The function G(p) ≡ (p − v̄)R(p) is
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an increasing function of p, starting at 0 at p = v̄ and converging to σ2 as
p→ ∞. To see that it is increasing, differentiate and use (20). To see the limit
as p→ ∞, apply l’Hôpital’s rule to the ratio (p − v̄)(1 − F(p))/f (p), using
(26). Thus, there exists a unique pc such that u(pc�0)= 0.

Now consider any p > pc . We will show that there is a unique solution
q =Qc(p) to u(p�q)= 0. The function R is decreasing and limx→∞R(x)= 0.
Because G is increasing,

(p− v̄)R(p) > (pc − v̄)R(pc)= βσ2�

so R(p) > βσ2/(p− v̄). Therefore, there is a unique Qc(p) such that R(p+
γQc(p)) = βσ2/(p− v̄); equivalently, u(p�Qc(p)) = 0. Differentiating (p−
v̄)R(p+ γQc(p))= βσ2 yields

(p− v̄)R′(p+ γQc(p)
)[

1 + γQ′
c(p)

] +R(
p+ γQc(p)

) = 0�

This implies

1 + γQ′
c(p)= − R(p+ γQc(p))

R′(p+ γQc(p))
· 1
p− v̄ >

p+ γQc(p)− v̄
p− v̄ > 1�

using Lemma 1. Therefore, Q′
c > 0. The condition u(p�Qc(p)) = 0 implies

that Qc solves the differential equation (8) for λ= 1. Because

R
(
p+ γQc(p)

) = βσ2

p− v̄ → βσ2

pc − v̄ =R(pc)

as p ↓ pc , we have limp↓pc Qc(p) = 0. Therefore, we can extend Qc continu-
ously by setting Qc(p)= 0 for all p≤ pc .

Step 2: λ = 0. By differentiating (19), we see that the condition up(p�q) =
0 is equivalent to v(x) − p + R(x) = 0. First, we show that there exists pm
such that up(pm�0)= 0. The function K(p)≡ v(p)−p+R(p) is decreasing,
positive at p= v̄+σ , and converges to −∞ as p→ ∞. To see that it is positive
at p= v̄+ σ , note that

v(v̄+ σ)− v̄− σ +R(v̄+ σ)= (β− 1)σ +R(v̄+ σ) > 0�

owing to Lemma 1 and the assumption β > 1/2. To see that K is decreasing
with limp→∞K(p) = −∞, note that K′(p) = β − 1 + R′(p) < β − 1 < 0. It
follows that there is a unique pm such that K(pm) = 0, equivalently, up(pm�
0)= 0. Moreover, pm > v̄+ σ .

Now, consider any p > pm. We will show that there is a unique solution
q =Qm(p) to up(p�q)= 0. Set L(x)= v(x)+R(x). Because K′ < β− 1, we
have L′ <β. The function L inherits the convexity of R, so for any x > pm,

L′(x)≥L′(v̄+ σ)= β+R′(v̄+ σ)= β− 1 + 1
σ
R(v̄+ σ)�
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using (27a) for the second equality. Using the assumption β > 1/2 and
Lemma 1, we obtain L′(x) > 0. The strictly positive lower bound on L′ im-
plies limx→∞L(x)= ∞. Finally, because L(pm)= pm, p> pm, and L′ < 1, we
have L(p) < p. Thus, there is a unique Qm(p) satisfying L(p+ γQm(p))= p;
equivalently, up(p�Qm(p))= 0. DifferentiatingL(p+γQm(p))= p and using
L′ <β implies

Q′
m(p) >

1 −β
γβ

> 0�(30)

The condition up(p�Qm(p))= 0 is equation (8) for λ= 0. Because

v
(
p+ γQm(p)

) +R(
p+ γQm(p)

) = p→ pm = v(pm)+R(pm)
as p ↓ pm, we have limp↓pm Qm(p)= 0. Therefore, we can extend Qm continu-
ously by setting Qm(p)= 0 for p≤ pm.

Step 3: Qc >Qm. We have

p= v(p+ γσQm(p)
) +R(

p+ γσQm(p)
)

for p≥ pm and

p= v̄+ βσ2

R(p+ γQc(p))

for p≥ pc . We will show that

v(x)+R(x) > v̄+ βσ2

R(x)
(31)

for all x > v̄. Both sides of this inequality are increasing in x (see Step 2 for
v+R). It follows that we must havepm > pc andQc(p) >Qm(p) for allp>pc .

The inequality (31) is equivalent to J(x) > 0, where we define

J(x)= β(x− v̄)R(x)+R(x)2 −βσ2�

Lemma 1 implies that limx→∞ J(x)= 0. Using the formula (27a), we can calcu-
late

J ′(x)= x− v̄
σ2

J(x)+
[
x− v̄
σ2

R(x)+β− 2
]
R(x)�

Also, [
x− v̄
σ2

R(x)+β− 2
]
R(x)= [

β(x− v̄)R(x)+β(β− 2)σ2
]R(x)
βσ2

< J(x)
R(x)

βσ2
�
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using β< 1 and R(x)2 > 0 for the inequality. Hence

J ′(x) <
[
x− v̄
σ2

+ R(x)

βσ2

]
J(x)�

Thus, if J(x) ≤ 0 for any x > v̄, then J ′(x) < 0. This is inconsistent with
limx→∞ J(x)= 0, so we conclude that J(x) > 0 for all x > v̄.

Step 4: 0< λ< 1. Fix λ ∈ (0�1). We want to solve

dQλ(p)

dp
=ψλ

(
p�Qλ(p)

)
�(32)

where

ψλ(p�q)= − up(p�q)

λuq(p�q)
= − 1

λγ
+ R(p+ γq)
λγ[p− v(p+ γq)] �

For each positive integer k> pm, consider the region

Dk = {
(p�q) | pc ≤ p≤ k�Qm(p)≤ q≤Qc(p)

}
�

Note that (p�0) ∈Dk for each p ∈ [pc�pm]. For q <Qc(p), we have, from the
monotonicity of v,

p− v(p+ γq)= v̄+ βσ2

R(p+ γQc(p))
− v(p+ γq)(33)

> v̄+ βσ2

R(p+ γQc(p))
− v(p+ γQc(p)

)
> 0�

This implies that ψλ is continuously differentiable in q on Dk. Also, for q >
Qm(p), we have, due to the monotonicity of the function L defined in Step 2,

R(p+ γq) > p− v(p+ γq)�(34)

Combining (33) and (34) shows that ψλ(p�q)≥ 0 on Dk with equality only at
q=Qm(p). Moreover, ψη(p�q) is a decreasing function of η for (p�q) ∈Dk.

Because ψλ is continuously differentiable in q on Dk, it satisfies a local Lip-
schitz condition, which implies that, for each initial condition a ∈ (pc�pm),
there exists a solution of (32) satisfying Qλ(a)= 0. The solution is defined up
to the price p where Qλ(p) hits the boundary of Dk.

Let Πc denote the set of p ≥ pc such that the solution of (32) with initial
condition Qλ(p)= 0 exits the region Dk at the boundary q =Qc(p). Because
ψη is decreasing in η, the solution of (32) with initial condition Qλ(pc) = 0
is larger than Q1, by a standard comparison theorem (e.g., Cole (1968, Theo-
rem 9-2.1)). Thus, pc ∈Πc . The comparison theorem also implies that, for any
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p ∈Πc , the interval [pc�p] is contained in Πc . Thus, Πc is an interval [pc� p̂].
The interval is closed on the right by the continuous dependence of solutions
on initial conditions.

Likewise, letΠm denote the set of p≤ pm such that the solution of (32) with
initial condition Qλ(p) = 0 exits the region Dk at the boundary q = Qm(p).
Because ψη is decreasing in η, the solution of (32) with initial condition
Qλ(pm)= 0 is smaller thanQ0, by the comparison theorem, so pm ∈Πm. Again,
the comparison theorem and the continuous dependence of solutions on initial
conditions imply that Πm is an interval [p̌�pm].

The two intervals [pc� p̂] and [p̌�pm] are disjoint, because the boundaries
q = Qc(p) and q = Qm(p) do not intersect. Therefore, the interval (p̂� p̌) is
nonempty. Choose any pk ∈ (p̂� p̌). By definition, the solution of (32) with
initial condition Qλ(pk) = 0 does not exit Dk at either of the boundaries
q = Qc(p) or q = Qm(p), so it must exit at the boundary p = k. There ex-
ists a subsequence of the pk that has a limit pλ ∈ [pm�pc]. By the contin-
uous dependence of solutions on initial conditions, the solution Qλ of (32)
with initial condition Qλ(pλ)= 0 does not exit any Dk at either of the bound-
aries q = Qc(p) or q = Qm(p), so it satisfies Qm(p) ≤ Qλ(p) ≤ Qc(p) for all
p<∞. Q.E.D.

PROOF OF THEOREM 3: To verify (10), we consider three regions: (i) p ≤
pask, (ii) v(x)≥ p>pask, and (iii) p> v(x) and p>pask. Define ω by (17).

In region (i), we have q > nS∗(p) and s∗(p) = 0, so we need to show that
up(p�q)≥ 0. For any q > 0, there exists p′ >pask ≥ p such that up(p′� q)= 0.
To show that up(p�q) ≥ 0, equivalently, up(p�q)/f (p�q) ≥ 0, it suffices to
show that up/f is decreasing in p. This is equivalent to R′ + v′ − 1< 0, and we
have both R′ < 0 and v′ < 1, so ω(p�q)≥ 0 in region (i).

In region (ii), we have u(p�q) ≤ 0, so we are to the right (in the usual qp
plane) of nS∗. We need to show here that ω(p�q)≥ 0. This is true, because we
have both uq(p�q)≥ 0 and up(p�q) > 0.

In region (iii), we will verify the equivalent conditions in (15), which implies
(10). We rewrite the second condition in (15), using R′ < 0 and v(x) = (1 −
β)v̄+βx, as

(1 −β)v̄+βx−p−β R(x)
R′(x)

> 0�(35)

The derivative of the left-hand side of (35) with respect to q is

γβR(x)R′′(x)
R′(x)2

> 0�
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due to the convexity of R. Thus, the left-hand side of (35) is an increasing
function of q, and it is positive for all q if it is positive at q= 0. Hence, we need
to show that

−(1 −β)(p− v̄)−β R(p)
R′(p)

> 0�

From (20), we have

−(1 −β)(p− v̄)−β R(p)
R′(p)

>−(1 −β)(p− v̄)+β(p− v̄)�

This is positive, because β> 1/2 and p> v̄. Q.E.D.

APPENDIX B: EQUIVALENCE OF THE DIFFERENTIAL EQUATIONS

The purpose of this appendix is to demonstrate that the differential equa-
tion (43) and boundary condition derived by Biais, Martimort, and Rochet
(2000) are equivalent, in the case of Example 1, to the differential equation
and boundary conditions studied in this paper. Biais, Martimort, and Rochet
(2000) assumed the type θ of the CARA investor has bounded support [¯θ� θ̄],and they characterized equilibrium in terms of the quantity Q(θ) received by
the CARA investor when his type is θ. The differential equation (43) is

∀θ ∈ (θa� θ̄)� Q′(θ)= 1
γ

(
1 + (n− 1)(q∗(θ)−Q(θ))

n(Q(θ)− qm(θ))
)−1

�(36a)

where θa = inf{θ |Q(θ) > 0}, and q∗ and qm are defined as

q∗(θ)= θ− v(θ)
γ

�(36b)

qm(θ)= q∗(θ)− R(θ)

γ
�(36c)

Proposition 8 of Biais, Martimort, and Rochet (2000) states that

∀θ ∈ (θa� θ̄)� qm(θ) <Q(θ) < q
∗(θ)�(36d)

Also, Proposition 8 states that Q is strictly increasing on the domain [θa� θ̄].
Finally, the boundary condition stated in Proposition 7 is

Q(θ̄)= q∗(θ̄)�(36e)

Here, we are writing Q for the transaction quantity denoted as qn by Biais,
Martimort, and Rochet (2000). Also, v(θ) = E[ṽ | θ̃ = θ], γ is the product of
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the risk aversion of the CARA investor with the variance of the assumed to be
normally distributed random variable ṽ−E[ṽ | θ̃], andR(θ)= (1−F(θ))/f (θ),
where F is the distribution function of θ̃ and f is the density function of θ̃. Us-
ing (36a) and (36d) and the first-order condition for the CARA investor, it can
be shown that the aggregate transfer schedule T must be twice differentiable
and strictly convex on the domain (0�Q(θ̄)). This implies that the associated
price function P = T ′ is differentiable and strictly increasing on the same do-
main. In our notation, the inverse of the aggregate price function P is nS∗,
where S∗ is the offer curve of each trader. Thus,

n
dS∗(p)
dp

= 1
P ′(nS∗(p))

on {p | 0< nS∗(p) <Q(θ̄)}.
Because Q restricted to [θa� θ̄] is strictly increasing, it is invertible on its

range [0�Q(θ̄)]. Denote the inverse function by q �→ θ(q). From (36a), substi-
tuting (36b) and (36c), we obtain

θ′(q)= γ

(
1 + (n− 1)(q∗(θ(q))− q)

n(q− qm(θ(q)))
)

= γ

(
1 + n− 1

n
· θ(q)− v(θ(q))− γq
γq+R(θ(q))+ v(θ(q))− θ(q)

)
�

The first-order condition for the CARA investor is θ(q)− γq= P(q), so

P ′(q)= θ′(q)− γ = γ
(
n− 1
n

)(
θ(q)− v(θ(q))− γq

γq+R(θ(q))+ v(θ(q))− θ(q)
)

for q ∈ (0�Q(θ̄)). It follows that

dS∗(p)
dp

= 1
γ(n− 1)

(
γq+R(θ(q))+ v(θ(q))− θ(q)

θ(q)− v(θ(q))− γq
)

on {p | 0< nS∗(p) < Q(θ̄)}, where q on the right-hand side is nS∗(p). Substi-
tuting θ(q)= P(q)+ γq= p+ γnS∗(p) gives

dS∗(p)
dp

= 1
γ(n− 1)

(
R(p+ γnS∗(p))+ v(p+ γnS∗(p))−p

p− v(p+ γnS∗(p))

)
�

which we can rearrange as

a
(
p�nS∗(p)

) + (n− 1)b
(
p�nS∗(p)

)dS∗(p)
dp

= 0�(37a)
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where

a(p�q)=R(p+ γq)+ v(p+ γq)−p�(37b)

b(p�q)= γ[
v(p+ γq)−p]

�(37c)

Now consider the differential equation (7) in the CARA case. From (2), we
have

up(p�q)= a(p�q)f (p+ γq)�
uq(p�q)= b(p�q)f (p+ γq)�

Hence, the differential equation (7) is equivalent to (37).
Section 6 uses the notation qmax for the maximum quantity transacted in

equilibrium and pmax for the maximum price. The boundary condition (36e)
states that qmax = (θ̄− v(θ̄))/γ. From the first-order condition p= θ− γq, we
obtain that pmax = v(θ̄). It follows immediately from (2) that u(pmax� qmax)= 0.
Moreover, computing the derivative from the left, we have

up(p
max� qmax)= [

v(pmax + γqmax)−pmax
]
f
(
pmax + γqmax

)
+ 1 − F(

pmax + γqmax
)

= [
v(θ̄)− v(θ̄)]f (θ̄)+ 1 − F(θ̄)= 0�
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