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Recent work uses option prices to derive lower bounds for the risk premia of the market 

portfolio and individual stocks. We test the bounds conditionally. We cannot reject that 

they are valid, but we do reject that they are tight. Using the market bounds as fore- 

casts appears unreasonable in many cases due to their high slackness. Adding past mean 

slackness is a potential improvement but is hampered by the brevity of the available data 

series. The correlation of the stock bounds with subsequent returns stems primarily from 

the time series rather than the cross section. 
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An innovative series of recent papers, beginning with

the seminal paper by Martin (2017) , uses option prices

and economic theory to place ex ante lower bounds on

risk premia of the market portfolio and individual stocks.

These bounds are potentially important advances in fore-

casting returns. Using an extended sample, we analyze

the bounds on the market risk premium developed by

Martin (2017) and ( Chabi-Yo and Loudis, 2020 ) and the

bounds on the risk premia of individual stocks developed

by Martin and Wagner (2019) and Kadan and Tang (2020) .

Using conditional tests, we cannot reject validity, but

we do reject tightness. We find some evidence that the

bounds are correlated with subsequent returns. We also
∗ Corresponding author. 

E-mail addresses: kerry.e.back@rice.edu (K. Back), kevin.p.crotty@rice. 

edu (K. Crotty), smkazempour@rice.edu (S.M. Kazempour) . 

https://doi.org/10.1016/j.jfineco.2022.02.003 

0304-405X/© 2022 Elsevier B.V. All rights reserved. 
perform out-of-sample forecasting tests. The bounds some- 

times outperform the historical market mean for forecast- 

ing, but the outperformance is statistically insignificant in 

our rather short data series. 

We test validity of the bounds by following 

Boudoukh et al. (1993) , who test whether zero is a 

lower bound on the conditional market risk premium. 

We interact realized bound slackness (the excess return 

minus the bound) with positive predictive variables stud- 

ied by Welch and Goyal (2008) . By iterated expectations, 

the mean interactions are nonnegative if the bound is 

valid. We test if the mean interactions are nonnegative 

against an unrestricted alternative. Unlike Boudoukh et al., 

we generally do not reject bound validity (our sample 

begins after theirs ends due to the availability of option 

prices). Because we do not reject bound validity, we 

proceed to test bound tightness by testing the null hy- 
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1 For the convenience of the reader, we repeat Martin’s reasoning that 

leads to the bound (3) and which shows that the bound is tight when 

the correlation is zero. The definition of variance, the definition of risk- 

neutral expectation as E ∗[ x ] = R f t,T E [ M t,T x ] , and the fact that E [ M t,T R t,T ] = 

1 imply 

var ∗(R t,T ) = R f t,T E [ M t,T R 
2 
t,T ] − R 2 f t,T . 

The definition of covariance and the fact that E [ M t,T R t,T ] = 1 imply 

E [ M t,T R 
2 
t,T ] = cov (M t,T R t,T , R t,T ) + E [ R t,T ] . 

We can substitute this into the previous formula and rearrange to obtain 

E [ R t,T ] − R f t,T = R f t,T SV IX 2 t,T − cov (M t,T R t,T , R t,T ) . 
pothesis that the mean interactions are zero against the

alternative that they are nonnegative. We find strong

evidence against tightness. 

To analyze the in-sample predictive power of the

bounds, we run time-series regressions for market bounds

and Fama–MacBeth and panel regressions for stock

bounds. In univariate market regressions, the Martin bound

is significant only at the 6 month horizon, and the Chabi-

o/Loudis bound is significant only at 6 and 12-month

horizons. However, both bounds are significant at all hori-

zons when we control for other standard market return

predictors. In the Fama–MacBeth regressions, the stock

bounds are insignificant predictors of returns, and the

signs are even wrong in the full sample; i.e., larger bound

realizations are associated with lower subsequent real-

ized returns. However, the bounds are significant predic-

tors in panel regressions with stock fixed effects, so we

conclude that the predictive power of the stock bounds

is primarily in the time series. We find additional ev-

idence that the cross-sectional predictability is limited

by examining portfolio returns from sorts on the stock

bounds. 

For both the market and the stock bounds, we cal-

culate out-of-sample R 2 s and run Diebold and Mari-

ano (1995) tests of out-of-sample forecasting power rela-

tive to the historical market mean as a benchmark. There

is some outperformance (especially for the Chabi-Yo/Loudis

market bound and the Martin–Wagner stock bound) but

it is statistically insignificant. Adding past mean slack-

ness to the bounds appears to be a promising forecast-

ing approach, but we have a much longer historical pe-

riod for estimating the mean market return than we do

for estimating mean slackness of the bounds. Simulations

for the market bounds show that we may need another

century or more of data before the ‘bound + past mean

slackness’ forecast can be expected to consistently gener-

ate positive out-of-sample R 2 s relative to the market-mean

benchmark. 

There are other related bounds/formulas for risk pre-

mia that were developed more recently that we do not

test. Bakshi et al. (2019) derive a formula for the market

risk premium. Chabi-Yo et al. (2022) derive a lower bound

on the risk premia of individual stocks, which they call a

‘generalized lower bound.’ Among other things, they follow

our lead in using the Kodde–Palm/Boudoukh–Richardson–

Smith methodology with the Goyal–Welch variables to test

the bound. They apply the test to stock portfolios. They do

not reject validity of their bound, nor do they reject tight-

ness at shorter horizons (1 and 3 months), but they do re-

ject tightness at longer horizons (6 and 12 months). They

also find that their bound outperforms the Martin–Wagner

and Kadan–Tang bounds in predicting stock returns; thus,

their paper is an important complement to ours. 

The bounds are defined in Section 1 , and our tests for

validity and tightness are described in Section 2 . The data

is described in Section 3 , the tests of validity and tight-

ness are presented in Section 4 , full-sample regressions

of excess returns on bounds are presented in Section 5 ,

and out-of-sample forecasting results are presented in

Section 6 . 
733 
1. Bounds 

For an asset with gross return R t,T over a time period 

[ t, T ] , define 

SV IX 

2 
t,T = var ∗

(
R t,T 

R f t,T 

)
, (1) 

where R f,t,T denotes the gross risk-free return over the 

same time period, and var ∗ denotes risk-neutral variance. 

This notation follows Martin (2017) , except that, as in 

Martin and Wagner (2019) , we do not annualize SV IX 2 t,T . 

Assuming that all dividends paid between t and T are paid 

at T and are known at t , Martin shows that (1) can be cal- 

culated in terms of put and call prices as 

SV IX 

2 
t,T = 

2 

R f,t,T S 
2 
t 

[∫ F t,T 

0 

put t,T ( K ) d K + 

∫ ∞ 

F t,T 

call t,T ( K ) d K 

]
,

(2) 

where S denotes the price of the asset and F t,T denotes 

its forward price at t for a contract maturing at T . Fur- 

thermore, under the Negative Correlation Condition (NCC), 

Martin derives the following lower bound for the risk pre- 

mium 

E t [ R t,T ] − R f,t,T ≥ R f,t,T SV IX 

2 
t,T . (3) 

The NCC is that the return R t,T has a negative correlation 

with M t,T R t,T , where M t,T denotes the stochastic discount 

factor (SDF) at t for pricing payoffs at T . The NCC is a quite 

plausible assumption for the market return, as detailed by 

Martin. For example, if there is a representative investor 

with constant relative risk aversion ρ and R t,T is the mar- 

ket return, then 

M t,T R t,T = 

R 

1 −ρ
t,T 

R f,t,T E 
[
R 

−ρ
t,T 

] , 

which is decreasing in R t,T and hence has a negative corre- 

lation with R t,T , provided only that ρ > 1 . When ρ = 1 (log 

utility), M t,T R t,T is nonrandom and hence has a zero corre- 

lation with R t,T . Thus, the bound (3) is tight when there is 

a representative investor with log utility. 1 

Chabi-Yo and Loudis (2020) observe that risk premia 

are proportional to risk-neutral covariances with the re- 

ciprocal of the SDF. They assume there is a representa- 

tive investor and perform a Taylor series expansion of the 

reciprocal of the representative investor’s marginal utility. 

With an assumption on risk-neutral moments of the mar- 

ket excess return (odd moments are weakly negative) and 
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2 λ̄ is the sample analogue to the unconditional expectation on the left- 

hand side of inequality (10) . Thus, we test whether the interactions of 

the bounds with the conditioning variables are nonnegative or zero on 

average rather than for each time period (inequality (9) ). 
some assumptions on the representative investor’s toler-

ances for risk, skewness, and kurtosis, they derive a lower

bound on the market risk premium based on the first

four risk-neutral moments of the market excess return. The

bound involves the tolerance parameters, which Chabi-Yo

and Loudis estimate from the data. They call this their un-

restricted lower bound. By imposing stronger restrictions

on the representative investor’s tolerance for risk, skew-

ness, and kurtosis, they obtain a bound that is free of pref-

erence parameters, which they call their restricted lower

bound. Chabi-Yo and Loudis show empirically that both of

their bounds are generally higher than the Martin bound

over their sample period. We confirm this for our extended

sample. We focus on the restricted Chabi-Yo/Loudis bound

in our empirical work, because it is free of preference pa-

rameters. 

Martin and Wagner (2019) derive the following formula

for the risk premium of an individual stock, after dropping

a stock fixed effect: 

E t 

[
R i,t,T − R f,t,T 

]
= E t [ R m,t,T − R f,t,T ] 

+ 

1 

2 

R f,t,T 

(
SV IX 

2 
i,t,T − SV IX 

2 

t,T 

)
. (4)

Here, SV IX 2 i,t,T is defined as in (1) for stock i , and SV IX 
2 

t,T is

the value-weighted average of (1) across all stocks. Using

Martin’s formula for the lower bound on the market risk

premium, Martin and Wagner deduce that 

E t 

[
R i,t,T − R f,t,T 

]
≥ R f,t,T SV IX 

2 
t,T 

+ 

1 

2 

R f,t,T 

(
SV IX 

2 
i,t,T − SV IX 

2 

t,T 

)
. (5)

with equality if Martin’s bound is tight. We refer to the

right-hand side of (5) as the Martin–Wagner bound. 

Kadan and Tang (2020) show that the NCC holds ap-

proximately for an individual stock under conditions sim-

ilar to those that imply it holds for the market if the pa-

rameter 

δit = 

var (R i,t,T ) 

cov (R i,t,T , R m,t,T ) 
(6)

is small. They conclude that the Martin bound (3) should

hold for individual stocks for which δit is small—

specifically, (3) is a lower bound for a stock’s expected

excess return if δit is less than risk aversion and if the

stock’s market beta is positive. They show empirically that

δit tends to be small for stocks with low market betas and

for stocks for which the market-model regression has a

high R 2 . Kadan and Tang also note that their formula may

be an upper bound for the risk premia of stocks with high

values of δit , because, if the opposite of the NCC holds—

that is, if R t,T and M t,T R t,T are positively correlated—then

the inequality in (3) is reversed. We refer to the Martin

bound (3) applied to individual stocks as the Kadan–Tang

bound. 

Simple algebra applied to (3) and (5) shows that 

KT i,t,T = 2 MW i,t,T + KT t,T − 2 M t,T , (7)

where KT denotes the Kadan–Tang bound, MW denotes

the Martin–Wagner bound, KT denotes the value-weighted

average of the Kadan–Tang bounds, and M denotes the
734 
Martin bound on the market risk premium. Thus, the 

Kadan–Tang bound is twice the Martin–Wagner bound 

plus the term KT t,T − 2 M t,T , which is constant across 

stocks. We will see that this term is usually positive in our 

sample ( Fig. 3.5 in Section 3 ), so the Kadan–Tang bound 

is usually substantially larger than the Martin–Wagner 

bound. Because the term is constant across stocks, the 

Kadan–Tang and Martin–Wagner bounds are perfectly cor- 

related in each cross section. Thus, for example, sorting 

stocks into portfolios based on a bound produces the same 

portfolios for the two bounds. 

2. Multiple inequality tests 

We test the bounds by testing inequality restrictions on 

a vector of moments. Let R e 
t,T 

denote an excess return from 

t to T , and let b t,T denote a lower bound on the conditional 

risk premium. So, we have 

E t 

[
R 

e 
t,T 

]
≥ b t,T . (8) 

For any vector z t of nonnegative conditioning variables in 

the time t information set, inequality (8) implies a vector 

of inequalities: 

E t 

[(
R 

e 
t,T − b t,T 

)
z t 
]

≥ 0 . (9) 

We will always include the constant 1 as an element of z t , 

so inequality (8) is included in the vector of inequalities 

(9) . By the law of iterated expectations, 

E 

[(
R 

e 
t,T − b t,T 

)
z t 
]

≥ 0 . (10) 

Let λ0 denote the population mean on the left-hand side 

of inequality (10) . 

We are interested in two questions. First, is the bound 

valid? To answer this, we test the null hypothesis λ0 ≥
0 against the alternative that λ0 is unrestricted. Second, 

if it appears that the bound holds, is the bound tight? 

To answer this, we test the null hypothesis that λ0 = 0 

against the alternative that λ0 ≥ 0 . The theory of test- 

ing inequality restrictions on parameter vectors and func- 

tions of parameter vectors has a substantial history, begin- 

ning with Perlman (1969) . We apply the asymptotic distri- 

bution theory developed by Kodde and Palm (1986) and 

Wolak (1989) for the minimum distance estimators we 

describe now. Our procedure is the same as that of 

Boudoukh et al. (1993) , except that we test both validity 

and tightness, whereas they only test validity (of zero as a 

lower bound for the market risk premium). 

Let λ̄ denote the sample mean of the vector (R e 
t,T 

−
b t,T ) z t . 

2 We assume ergodicity, so λ̄ is a consistent esti- 

mator of λ0 . Let � denote a consistent estimator of the 

asymptotic covariance matrix of λ̄. Define 

D 1 = min 

λ≥0 

(
λ − λ̄

)′ 
�−1 

(
λ − λ̄

)
. (11) 

The statistic D 1 is the squared distance of λ̄ from the non- 

negative orthant in the norm defined by �−1 . If λ ≥ 0 , 
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3 We have verified that our calculations are consistent with the bounds 

provided by Ian Martin on his website for the period January 1996 

through January 2012 and the bounds provided on Fousseni Chabi-Yo’s 

website for the period January 1996 through August 2015. OptionMetrics 

data starts in 1996; we use option prices from CBOE to extend our sample 

earlier to 1990. 
then it is unlikely that λ̄ will be far from the nonnegative

orthant, so the distance D 1 can be used to test the null

that λ0 ≥ 0 against the alternative that λ0 is unrestricted

(i.e., to test whether the bound is valid). Set 

ˆ λ = argmin λ≥0 

(
λ − λ̄

)′ 
�−1 

(
λ − λ̄

)
. (12)

Under the null that λ0 ≥ 0 , D 1 is asymptotically distributed

as a mixture of chi-square distributions with various de-

grees of freedom depending on the number of elements of
ˆ λ that are strictly positive. See Appendix A for more de-

tails. 

Set 

D 0 = λ̄′ �−1 λ̄ . (13)

This is the squared distance of λ̄ from the origin in the

norm defined by �−1 , and it is the standard Wald chi-

square statistic for testing λ0 = 0 against an unrestricted

alternative. Finally, set 

D 2 = D 0 − D 1 . (14)

The statistic D 2 is the squared distance of λ̄ from the origin

minus its squared distance from the nonnegative orthant,

all under the norm defined by �−1 . We use it to test the

null that λ0 = 0 against the alternative that λ0 ≥ 0 , that is,

to test the null that the bound is tight against the alterna-

tive that it is valid. Under this null, D 2 is also asymptot-

ically distributed as a mixture of chi-square distributions

with various degrees of freedom depending on the num-

ber of elements of ˆ λ that are strictly positive. Again, more

details are provided in Appendix A . By the usual properties

of orthogonal projections, D 2 = ̂

 λ′ �−1 ˆ λ. 

In addition to asymptotic p-values based on the limiting

chi-square distributions, we also report simulated finite-

sample p-values for the market risk premium bounds. We

model the conditional mean of daily returns, μt , as an

AR(1) process. The return-generating process is: 

μt+1 = (1 − a ) ̄μ + aμt + u t+1 , (15)

r t+1 = μt + v t+1 , (16)

where time t is measured in days and where the inno-

vation vectors (u t , v t ) are mean-zero iid random vectors

(with u t and v t possibly correlated). We model the forward

return as the sum of the daily returns over the horizon,

and we model the bound at date t as the mean of the for-

ward return conditional on μt . The conditioning variables

in our empirical analyses are observed monthly. To be con-

sistent in our simulations, we model the logs of the condi-

tioning variables x = log z as a VAR(1) with monthly time

steps: 

x m +1 = (I − A ) ̄x + Ax m 

+ w m +1 . (17)

We assume the innovation vectors w m 

are mean-zero iid

random vectors. We calibrate the model allowing for ar-

bitrary empirical slackness (see Appendix B ). We calibrate

separately for the Martin and Chabi-Yo/Loudis bounds, and

we calibrate separately for each horizon. For each of the

two bounds and each of the horizons, we run 10 0 0 sim-

ulations, each consisting of the same number of days that

we have in our sample. In each simulation, we take the
735 
bound to be tight, so we estimate p-values under the null 

of a tight bound. 

Our methodology is quite different from that of 

Martin (2017) and Chabi-Yo and Loudis (2020) , who test 

tightness in a regression framework and test validity only 

as a corollary of tightness. They regress the market excess 

return on their bounds b t ,t + h : 

R 

e 
t ,t + h = αh + βh b t ,t + h + ε th . (18) 

for various horizons h . Both Martin and Chabi-Yo/Loudis 

observe that they cannot reject the null hypothesis that 

αh = 0 and βh = 1 for any h , i.e., that the bound is tight. 

However, the standard errors on βh are quite large in both 

papers, and the data also fail to reject the null that βh = 2 . 

In fact, the point estimates in both papers are above 2 at 

the six-month horizon. Obviously, if βh = 2 in (18) (and αh 

is not too negative), then the bound is slack. Thus, with 

this type of test, we cannot reject that the bounds are 

tight, but we also cannot reject that they are slack. The test 

simply does not have much power. 

To conclude this section, it seems useful to discuss how 

our validity and tightness tests relate to regressions of re- 

alized slackness on conditioning variables. The validity and 

tightness tests are unaffected if we rescale each condition- 

ing variable to have a unit mean, so suppose we have done 

so. Then, for each variable z j and an excess return R e 
t,T 

(which could be the market or an individual stock), we 

have 

E [(R 

e 
t,T − b t,T ) z jt ] = E [ R 

e 
t,T − b t,T ] + cov (R 

e 
t,T − b t,T , z jt ) . 

Recall that the constant 1 is included in the conditioning 

variables. So, validity means that 

E [ R 

e 
t,T − b t,T ] ≥ 0 (19a) 

and that 

cov (R 

e 
t,T − b t,T , z jt ) ≥ −E [ R 

e 
t,T − b t,T ] (19b) 

for each j. In other words, a valid bound must be valid un- 

conditionally and moreover covariances of realized slack- 

ness with conditioning variables cannot be ‘too negative.’ 

Similarly, a tight bound must be tight unconditionally and 

moreover covariances of realized slackness with condition- 

ing variables must be zero. So, conditional tests of valid- 

ity and tightness are tantamount to unconditional tests 

plus tests of regression coefficients from regressing real- 

ized slackness on conditioning variables. 

3. Bound and return data 

3.1. Market bounds and returns 

Table 1 presents summary statistics of the market 

excess return and the bounds. The time-series of the 

bounds run from January 1990 through December 2020. 

Appendix C explains the details of how the bounds are cal- 

culated. 3 We compute market excess returns from S&P 500 
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Table 1 

Market summary statistics. 

The sample contains daily observations on the bounds from January 1990 through December 2020. Data on subsequent realized market excess returns runs 

from January 1990 through March 2021. Returns and bounds are annualized and expressed in percent. The market excess return for a given date is the S&P 

500 return in excess of the risk-free rate, compounded over the indicated horizon (and annualized). Martin Bound denotes the Martin (2017) bound. CYL 

Bound denotes the restricted bound from Chabi-Yo and Loudis (2020) . 

Mean SD P10 P25 P50 P75 P90 N 

Panel A. 1-month Horizon 

Market Excess Return 8 .76 54 .06 −54 .48 −17 .29 14 .22 39 .29 64 .33 7789 

Martin Bound 3 .81 3 .99 1 .20 1 .62 2 .65 4 .54 7 .16 7789 

CYL Bound 4 .39 5 .03 1 .31 1 .80 2 .97 5 .17 8 .25 7789 

Panel B. 3-month Horizon 

Market Excess Return 8 .73 29 .93 −28 .17 −4 .99 11 .39 26 .11 40 .00 7787 

Martin Bound 3 .86 3 .15 1 .47 1 .94 2 .91 4 .79 6 .93 7787 

CYL Bound 4 .77 4 .40 1 .70 2 .30 3 .48 5 .75 8 .73 7787 

Panel C. 6-month Horizon 

Market Excess Return 8 .67 21 .44 −17 .66 −1 .77 10 .33 20 .95 32 .79 7724 

Martin Bound 3 .83 2 .59 1 .68 2 .15 3 .04 4 .79 6 .68 7724 

CYL Bound 5 .06 3 .94 2 .04 2 .73 3 .91 6 .10 9 .03 7724 

Panel D. 12-month Horizon 

Market Excess Return 8 .86 15 .64 −14 .24 2 .69 10 .36 18 .40 25 .17 7598 

Martin Bound 3 .68 2 .09 1 .77 2 .25 3 .04 4 .58 6 .12 7598 

CYL Bound 5 .18 3 .47 2 .23 3 .02 4 .24 6 .30 8 .97 7598 

Fig. 3.1. Time series of Martin and Chabi-Yo/Loudis bounds. 

The daily time-series of the Martin and Chabi-Yo/Loudis bounds are shown (in % per year) as well as their difference. 
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returns from January 1990 through March 2021, using the

risk-free rate from Ken French’s website. The mean market

excess return is substantially larger than the mean bounds,

by roughly 3.5% to 5% per year, depending on the bound

and the horizon. Consistent with the results of Chabi-Yo

and Loudis, the Chabi-Yo/Loudis bound is generally higher

than Martin’s bound, so realized slackness is lower. 

Fig. 3.1 shows the time series of the Martin and Chabi-

o/Loudis bounds. As emphasized by Martin (2017) , the
736 
bounds are very volatile and are occasionally quite high. 

The peaks are in periods when measures of market uncer- 

tainty like the VIX are also very high. Fig. 3.1 confirms that 

the Chabi-Yo/Loudis bound is almost always higher then 

the Martin bound, and their difference is correlated with 

their levels. Fig. 3.2 presents the same daily bound data 

in a different format. It confirms that, as is evident also 

from Fig. 3.1 , the two bounds are highly correlated. The 

correlation ranges from 99.8% at the 1-month horizon to 
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Fig. 3.2. Scatter plot of Martin and Chabi-Yo/Loudis bounds. 

Fig. 3.3. Martin bound and subsequent excess returns. 

The Martin bound is calculated at the end of each month for each horizon. The monthly bounds are sorted into 50 groups, and the mean bound and 

mean subsequent excess return are computed within each group. The green dashed line is the 45 ◦ line. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

98.9% at the 12-month horizon. As Fig. 3.2 demonstrates,

in our sample, the Chabi-Yo/Loudis bound is a multiple

greater than one of the Martin bound plus a small amount

of noise. 

Fig. 3.3 shows binned averages of the Martin bound

and subsequent excess returns. A majority of the points in

Fig. 3.3 lie above the 45 ◦ line, consistent with the bound

being a lower bound. Surprisingly, for the longer horizon

returns, realized slackness takes some of its largest values

when the bound is also high. Due to the high correlation

of the Martin and Chabi-Yo/Loudis bounds, the figure is

very similar for the Chabi-Yo/Loudis bound, though due to

the Chabi-Yo/Loudis bound being generally larger than the

Martin bound, fewer points lie above the 45 ◦ line for the

Chabi-Yo/Loudis bound (see Figure IA.1 in the internet ap-

pendix). 
737 
3.2. Stock bounds and returns 

Our stock panel runs from January 1996 to December 

2020 and consists of S&P 500 constituent stocks satisfy- 

ing the filters discussed in Appendix C . Table 2 reports 

summary statistics for our stock panel. The Martin–Wagner 

bound reported in the table is their Eq. (17) , which is 

an exact formula for stock risk premia when the Martin 

bound is tight (and when the stock fixed effect in Martin 

and Wagner’s Eq. (15) is zero) and a lower bound when 

the Martin bound is slack; we refer to this as the ‘Martin–

Wagner bound.’ We call the Martin (2017) formula applied 

to individual stocks the ‘Kadan–Tang bound.’ The table re- 

ports statistics for the full sample as well as for subsam- 

ples based on Kadan and Tang’s δ parameter. The δ groups 

are Conservative ( δ ≤ 3 , which is the union of Kadan and 
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Table 2 

Stock panel summary statistics. 

The panel contains monthly observations for S&P 500 constituent stocks with traded options passing the filters described in Appendix C from January 1996 

through December 2020. The panel contains 1111 distinct stocks. The maximum (minimum) number of distinct stocks in a month is 504 (476). Returns and 

bounds are annualized and expressed in percent. Martin–Wagner Bound denotes the stock bound from Martin and Wagner (2019) under the assumption 

that the Martin (2017) market bound is tight. Kadan–Tang Bound denotes the Kadan and Tang (2020) stock bound. Statistics are presented for stock-months 

binned into δ ranges ( δ is the ratio of beta to R 2 from the stock’s market-model regression). The δ groups are Conservative ( δ ≤ 3 ), Liberal ( 3 < δ ≤ 7 ) and 

Other ( δ > 7 ). 

Panel A. 1-month Horizon 

Mean SD P10 P25 P50 P75 P90 N 

Excess Return 

All 9 .76 122 .63 −119 .71 −49 .63 10 .84 68 .94 134 .63 146,922 

Conservative 15 .11 97 .11 −92 .93 −35 .81 15 .51 65 .57 121 .10 57,638 

Liberal 6 .59 125 .75 −128 .28 −56 .03 8 .19 69 .48 136 .80 65,814 

Other 5 .54 162 .87 −164 .13 −73 .07 3 .57 79 .00 169 .09 23,470 

Martin–Wagner Bound 

All 5 .05 7 .99 0 .49 1 .38 2 .90 5 .75 11 .12 146,922 

Conservative 4 .17 5 .64 0 .46 1 .22 2 .55 4 .95 9 .19 57,638 

Liberal 4 .98 8 .25 0 .55 1 .42 2 .88 5 .60 10 .65 65,814 

Other 7 .38 11 .13 0 .44 1 .92 4 .23 8 .71 16 .87 23,470 

Kadan–Tang Bound 

All 12 .40 15 .93 3 .34 4 .94 7 .98 13 .79 24 .36 146,922 

Conservative 9 .47 10 .36 2 .87 4 .17 6 .53 10 .70 18 .19 57,638 

Liberal 12 .53 16 .29 3 .65 5 .22 8 .24 13 .89 23 .56 65,814 

Other 19 .25 22 .64 4 .82 7 .55 12 .52 22 .17 39 .26 23,470 

Panel B. 3-month Horizon 

Excess Return 

All 9 .58 70 .11 −67 .22 −25 .90 10 .21 44 .60 82 .24 145,176 

Conservative 14 .09 54 .75 −48 .26 −15 .60 14 .01 43 .45 74 .28 56,665 

Liberal 6 .93 72 .62 −74 .04 −30 .58 7 .86 44 .57 83 .72 65,360 

Other 5 .97 92 .27 −94 .19 −41 .62 4 .07 49 .40 103 .14 23,151 

Martin–Wagner Bound 

All 4 .74 6 .91 0 .74 1 .52 2 .88 5 .42 10 .05 145,176 

Conservative 3 .86 4 .41 0 .75 1 .39 2 .54 4 .69 8 .25 56,665 

Liberal 4 .68 6 .94 0 .75 1 .56 2 .88 5 .30 9 .73 65,360 

Other 7 .09 10 .44 0 .63 1 .96 4 .10 8 .18 16 .14 23,151 

Kadan–Tang Bound 

All 11 .19 13 .95 3 .22 4 .58 7 .26 12 .44 21 .63 145,176 

Conservative 8 .34 8 .22 2 .80 3 .89 5 .88 9 .58 15 .83 56,665 

Liberal 11 .29 13 .81 3 .51 4 .86 7 .52 12 .57 21 .19 65,360 

Other 17 .88 21 .28 4 .53 6 .96 11 .50 20 .22 36 .92 23,151 

Panel C. 6-month Horizon 

Excess Return 

All 9 .42 50 .63 −46 .14 −16 .87 9 .17 34 .10 61 .75 142,550 

Conservative 13 .05 40 .63 −31 .99 −9 .00 12 .51 33 .90 57 .30 55,203 

Liberal 7 .29 52 .68 −51 .16 −20 .86 6 .89 33 .74 62 .18 64,611 

Other 6 .68 64 .26 −63 .33 −28 .19 4 .26 36 .03 74 .49 22,736 

Martin–Wagner Bound 

All 4 .61 6 .37 0 .91 1 .67 2 .93 5 .25 9 .42 142,550 

Conservative 3 .72 3 .83 0 .94 1 .57 2 .59 4 .52 7 .58 55,203 

Liberal 4 .55 6 .26 0 .92 1 .70 2 .95 5 .19 9 .11 64,611 

Other 6 .97 10 .01 0 .76 2 .03 4 .10 8 .03 15 .91 22,736 

Kadan–Tang Bound 

All 10 .68 13 .07 3 .20 4 .50 7 .00 11 .84 20 .40 142,550 

Conservative 7 .85 7 .36 2 .81 3 .84 5 .68 9 .03 14 .55 55,203 

Liberal 10 .75 12 .65 3 .47 4 .78 7 .28 12 .01 20 .02 64,611 

Other 17 .32 20 .53 4 .41 6 .78 11 .16 19 .51 35 .83 22,736 

Panel D. 12-month Horizon 

Excess Return 

All 9 .23 37 .26 −32 .05 −11 .50 8 .02 26 .93 47 .76 137,230 

Conservative 12 .31 28 .94 −21 .12 −3 .82 11 .78 27 .35 44 .39 52,684 

Liberal 7 .44 39 .02 −35 .70 −15 .06 5 .53 26 .22 48 .47 62,593 

Other 6 .90 47 .87 −44 .06 −20 .63 2 .25 27 .71 57 .24 21,953 

Martin–Wagner Bound 

All 4 .50 6 .04 1 .00 1 .75 2 .92 5 .08 8 .99 137,230 

Conservative 3 .50 3 .39 1 .04 1 .65 2 .55 4 .18 6 .83 52,684 

Liberal 4 .45 5 .82 1 .00 1 .77 2 .99 5 .12 8 .83 62,593 

Other 7 .07 9 .74 0 .86 2 .12 4 .16 8 .13 16 .27 21,953 

Kadan–Tang Bound 

All 10 .51 12 .57 3 .27 4 .55 6 .94 11 .61 19 .87 137,230 

Conservative 7 .45 6 .54 2 .90 3 .89 5 .58 8 .57 13 .35 52,684 

Liberal 10 .60 11 .90 3 .54 4 .86 7 .30 11 .97 19 .70 62,593 

Other 17 .57 20 .20 4 .49 6 .85 11 .22 19 .78 36 .95 21,953 

738 
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Fig. 3.4. Stock bounds by δ. 

The median Kadan–Tang and Martin–Wagner bounds at the 6-month horizon are shown (in % per year) in each δ group and for the full sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 Our results are qualitatively unchanged if we include the bounds 

themselves as a conditioning variable in addition to the positive versions 

of variables from Welch and Goyal (2008) . These results are reported in 

the internet appendix (Tables IA.1 and IA.2 for the market and stock-level 

bounds, respectively). 
Tang’s Very Conservative and Conservative groups), Liberal

( 3 ≤ δ ≤ 7 , which is the union of Kadan and Tang’s Mod-

erate, Liberal, and Very Liberal groups) and Other ( δ > 7 ).

Of the approximately 150,0 0 0 stock-months in the panel,

about 40% fall in the Conservative group, 45% belong to

the Liberal group, and the last 15% are in the Other group,

as reported in the table. The table shows that the average

and median levels of both bounds are increasing across δ
groups. There are also clear patterns for subsequent excess

returns as a function of δ: average and median excess re-

turns are inversely related to δ, and the standard deviation

of excess returns is directly related to δ. For the Conser-

vative group, the average slackness of the Martin–Wagner

bound is about 9–11%, while it is 5–6% for the Kadan–

Tang bound. For the highest δ group, the average Kadan–

Tang bound is 11–14% greater than the average realized ex-

cess return, consistent with the Kadan–Tang bound being

an upper bound for higher levels of δ. For the full sample

and all horizons, the Martin–Wagner bound is on average

about half of the realized excess return, suggesting it may

be a slack lower bound for risk premia. Without condition-

ing on δ, the Kadan–Tang bound is on average larger than

the subsequent realized excess return. 

Fig. 3.4 plots the time series of the median 6-month

Kadan–Tang and Martin–Wagner bounds for the full sam-

ple and within each of the three δ groups. The plots for the

other horizons look similar. The figure shows that the me-

dian Kadan–Tang bound is higher than the median Martin–

Wagner bound in each δ group at each point in time. This

is true at the 1, 3, and 12-month horizons also. As dis-

cussed in Section 1 , the Kadan–Tang bound is twice the

Martin–Wagner bound plus a number that varies over time

but is constant across stocks at each date. Fig. 3.5 shows

how this number varies over time. It is usually positive,
739 
implying that the Kadan–Tang bound is more than twice 

the Martin–Wagner bound for every stock. 

Fig. 3.6 shows average excess stock returns in per- 

centiles of the Martin–Wagner bound. Most points lie 

above the 45 ◦ line, consistent with the bound being a 

lower bound, particularly for horizons greater than 1 

month. Fig. 3.7 shows average excess stock returns in per- 

centiles of the Kadan–Tang bound for the Conservative 

group of stocks. Here also, most points lie above the 45 ◦

line, consistent with the bound being a lower bound for 

this group of stocks. Fig. 3.8 is the same plot for the Lib- 

eral group. For this group, most of the points are below the 

45 ◦ line, which is inconsistent with it being a lower bound. 

The plot for the Other group, which is not presented, is 

a more extreme version of the plot for the Liberal group: 

almost all of the points lie below the 45 ◦ line. These fig- 

ures are consistent with Kadan and Tang’s result that the 

bound should be a lower bound for low δ and an upper 

bound for high δ. They are also consistent with empirical 

results presented in Section 4.2 . 

4. Validity and tightnesss 

We report the tests described in Section 2 for the mar- 

ket bounds and for the stock-level bounds. For the con- 

ditioning variables, we use positive versions of variables 

from Welch and Goyal (2008) . 4 Our general conclusion is 

that we can reject tightness but not validity, though the 
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Fig. 3.5. Comparison of Kadan–Tang and Martin–Wagner bounds. 

For each horizon and at each point in time, the Kadan–Tang bound minus twice the Martin–Wagner bound is constant across stocks. The plots are of the 

time series KT − 2 × MW in percent per year. 

Fig. 3.6. Martin–Wagner bound and subsequent stock returns. 

The Martin–Wagner bound for each horizon is sorted into percentiles, and the mean bound and mean subsequent excess return are computed within each 

percentile. The green dashed line is the 45 ◦ line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 

of this article.) 

 

 

 

 

 

 

 

 

 

 

5 We use the Newey and West (1987) estimator with lags equal to 

1.5 times the number of days in the horizon when the Hansen and Ho- 

drick (1980) covariance matrix is not positive semidefinite. This occurs for 

the moments of slackness interacted with conditioning variables—used in 

our tests of validity and tightness—at the 12-month horizon in our sample 

and at the 6 and 12 month horizons in the original samples. 
conclusion varies by δ group for the Kadan–Tang bound.

We show in Section 4.3 that the results for validity are

driven more by average realized slackness than by the pre-

dictive power of the bounds. 

4.1. Validity and tightnesss of market bounds 

Table 3 reports the tests for the market bounds for

the original sample periods of Martin and Chabi-Yo and

Loudis and also for our extended 30-year sample. We re-

port asymptotic p-values and also finite sample p-values

based on the simulation analysis described in Section 2 .

We conduct all tests with daily data and overlapping re-

turn periods, using the Hansen and Hodrick (1980) covari-
740 
ance matrix estimator with lags equal to the number of 

days in the horizon. 5 

In the extended sample, the sample moments are all 

positive, so the statistic D 1 described in Section 2 is zero, 

and the null of validity is certainly not rejected. In the 

original samples, the statistic is positive but small, well be- 

low the lower bound on the critical value for a 10% test 

size of 1.64 from Kodde and Palm (1986) , so we do not 
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Fig. 3.7. Kadan–Tang bound and subsequent conservative stock returns. 

Within the Conservative group, the Kadan–Tang bound for each horizon is sorted into percentiles, and the mean bound and mean subsequent excess return 

are computed within each percentile. The green dashed line is the 45 ◦ line. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. 3.8. Kadan–Tang bound and subsequent liberal stock returns. 

Within the Liberal group, the Kadan–Tang bound for each horizon is sorted into percentiles, and the mean bound and mean subsequent excess return are 

computed within each percentile. The green dashed line is the 45 ◦ line. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

reject validity in the subsamples either. Inference is un-

changed using finite-sample p-values. 

The statistic D 2 provides a test of tightness against

the alternative that the bound is valid but not tight. In

all but one case, the statistic exceeds the upper bound

on the critical value for a 0.1% test size of 27.13 from

Kodde and Palm (1986) . Thus, the asymptotic test strongly

rejects tightness. Inference is generally unchanged using

finite-sample p-values, with the exception of the Mar-

tin bound at the 1-month horizon and the Chabi-Yo and

Loudis bound at the 12-month horizon in the original sam-

ples. In the extended sample, we can reject tightness at the

10% level for both bounds at all horizons using finite sam-

ple inference. 

Table 3 also reports p-values from F -tests of the null

hypothesis that αh = 0 and βh = 1 in predictive regres-

sion (18) . In both the extended data and the original sam-

ples, we cannot reject the null hypothesis that the bounds

are tight using this regression-based test. As mentioned
741 
earlier, Martin (2017) and Chabi-Yo and Loudis (2020) con- 

duct the same test and reach the same conclusion. The re- 

jection of tightness using conditional tests when the un- 

conditional F -test fails to reject is consistent with the for- 

mer having greater power. 

4.2. Validity and tightnesss of stock bounds 

We follow the same procedure that we use for the mar- 

ket risk premium but averaging across stocks and using 

monthly rather than daily data. We compute the excess re- 

turn of each stock and the excess return interacted with 

the Goyal–Welch variables and compute the sample means, 

averaging over dates and stocks for each variable. That is, 

we calculate 

λ̄h = 

1 

T 

T ∑ 

t=1 

1 

N t 

N t ∑ 

i =1 

(R 

e 
i,t ,t + h − b i,t ,t + h ) z t 
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Table 3 

Validity and tightness of market bounds. 

The table reports tests statistics for bound validity and bound tightness for the Martin (2017) and Chabi-Yo and Loudis (2020) bounds in Panels A and 

B, respectively. Each panel reports results for the indicated original sample period as well as for our extended sample. The extended sample contains 

daily observations on the bounds from January 1990 through December 2020, and data on subsequent realized market excess returns runs from January 

1990 through March 2021. The test statistics D 1 and D 2 are defined in Section 2 . The sample moments are means of daily realized slackness and daily 

realized slackness interacted with each of the following variables from Welch and Goyal (2008) : Dividend Price Ratio (defined as the difference between 

the log of dividends and the log of the S&P 500 index price level, plus 5 to ensure a positive conditioning variable); Earnings Price Ratio (defined as the 

difference between the log of earnings and the log of the S&P 500 index price level, plus 5 to ensure a positive conditioning variable); Book-to-Market 

Ratio (the ratio of book value to market value for the Dow Jones Industrial Average); T-bill Rate (the 3-month Treasury bill rate); 1 + Term Spread (defined 

as the difference between the long-term yield from Ibbotson’s and the 3-month T-bill rate, plus 1 to ensure a positive conditioning variable); Credit Spread 

(defined as difference between BAA and AAA-rated corporate bond yields); Stock Variance (defined as the sum of squared daily returns on the S&P 500); 

1 + Net Equity Issuance (the ratio of 12-month moving sums of net issues by NYSE-listed stocks to the total end-of-year market capitalizations of NYSE 

stocks, plus 1 to ensure a positive conditioning variable); 1 + Inflation (the Consumer Price Index, plus 1 to ensure a positive conditioning variable). The 

covariance matrix of the moments is calculated using the Hansen–Hodrick estimator with the number of lags equal to the number of days in the horizon 

(with a month defined as 21 days), unless the matrix is not positive-definite, in which case the Newey–West estimator with the number of lags equal to 

1.5 times the number of days in the horizon is used. Asymptotic p -values (in percent notation) are based on the methodology described in Appendix A . 

Finite-sample p -values (in percent notation) are based on test statistics simulated under the null of a tight bound as detailed in Appendix B . The table also 

reports the p -value from an F -test of the null hypothesis that αh = 0 and βh = 1 in predictive regression (18) . 

Panel A. Martin Bound 

Original Sample (Jan 1996–Jan 2012) 

1 3 6 12 

p( F test of α = 0 , β = 1 ) 96.5 99.5 38.0 74.3 

D 1 (Validity) 0.61 0.32 0.00 0.01 

p( D 1 ) - Asymptotic 39.4 48.5 65.4 61.1 

p( D 1 ) - Finite Sample 33.9 46.8 62.7 61.3 

D 2 (Tightness) 24.06 39.11 38.71 69.30 

p( D 2 ) - Asymptotic 0.5 0.0 0.0 0.0 

p( D 2 ) - Finite Sample 10.7 0.4 7.5 8.6 

Extended Sample (Jan 1990–Dec 2020) 

p( F test of α = 0 , β = 1 ) 17.9 16.9 23.8 23.4 

D 1 (Validity) 0.00 0.00 0.00 0.00 

p( D 1 ) - Asymptotic 100.0 100.0 100.0 100.0 

p( D 1 ) - Finite Sample 100.0 100.0 100.0 100.0 

D 2 (Tightness) 29.93 39.51 49.28 71.21 

p( D 2 ) - Asymptotic 0.0 0.0 0.0 0.0 

p( D 2 ) - Finite Sample 3.6 0.4 2.6 8.3 

Panel B. Chabi-Yo/Loudis Bound 

Original Sample (Jan 1996–Aug 2015) 

p( F test of α = 0 , β = 1 ) 55.7 81.1 17.7 68.3 

D 1 (Validity) 0.52 0.42 0.04 0.01 

p( D 1 ) - Asymptotic 42.4 45.5 59.6 62.8 

p( D 1 ) - Finite Sample 37.2 43.7 57.3 63.4 

D 2 (Tightness) 31.15 77.27 40.32 40.21 

p( D 2 ) - Asymptotic 0.0 0.0 0.0 0.0 

p( D 2 ) - Finite Sample 2.9 0.0 6.5 18.7 

Extended Sample (Jan 1990–Dec 2020) 

p( F test of α = 0 , β = 1 ) 23.8 29.0 44.1 47.4 

D 1 (Validity) 0.00 0.00 0.00 0.00 

p( D 1 ) - Asymptotic 100.0 100.0 100.0 100.0 

p( D 1 ) - Finite Sample 100.0 100.0 100.0 100.0 

D 2 (Tightness) 28.72 36.78 44.12 61.82 

p( D 2 ) - Asymptotic 0.1 0.0 0.0 0.0 

p( D 2 ) - Finite Sample 4.6 1.5 4.4 9.9 

 

 

 

 

 

 

 

 

for each horizon h . We test the validity of the bounds by

testing the null that the vector of population means is non-

negative against an unrestricted alternative. When we can-

not reject validity of a bound, we test its tightness by test-

ing the null that the vector of means is zero, against the

alternative that it is nonnegative. We calculate the covari-

ance matrix of the moments following a block bootstrap

approach similar to that of Martin and Wagner (2019) .

See Appendix A for details. 
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Table 4 reports the results of the validity and tight- 

ness tests. We cannot reject validity of the Martin–Wagner 

bound, but we do reject tightness. We reach the same 

conclusion for the Kadan–Tang bound for the Conserva- 

tive group. As a lower bound, the Kadan–Tang bound is re- 

jected for the Other group and rejected or nearly rejected 

for the Liberal group, depending on the horizon. On the 

other hand, as an upper bound, the Kadan–Tang bound 

is accepted as valid and rejected as tight for the Liberal 
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Table 4 

Validity and tightness of stock bounds. 

Bound validity and tightness are tested for the Martin and Wagner (2019) 

bounds for the full sample and for the Kadan and Tang (2020) bounds 

for the indicated subsamples based on δ. The test statistics D 1 and D 2 
for testing lower bound validity and tightness are defined in Section 2 , 

and the test statistics D 3 and D 4 for testing upper bound validity and 

tightness are defined in Section 4 . The table reports p-values for each 

statistic in percent notation. p-values are based on the methodology de- 

scribed in Appendix A . The sample moments are means of monthly re- 

alized slackness and monthly realized slackness interacted with each of 

the Welch and Goyal (2008) variables described in Table 3 . The covari- 

ance matrix of the moments is calculated following the block bootstrap 

procedure described in Appendix A . For the Kadan/Tang bound, p-values 

are presented for stocks binned into δ ranges ( δ is the ratio of beta to R 2 

from the stock’s market-model regression). The δ groups are Conservative 

( δ ≤ 3 ), Liberal ( 3 < δ ≤ 7 ) and Other ( δ > 7 ). The statistics are based on 

monthly observations for S&P 500 constituent stocks with options passing 

the filters described in Appendix C from January 1996 through December 

2020. 

Panel A. Lower Bound Validity Tests 

1 3 6 12 

Martin–Wagner (All) 100 .0 100 .0 100 .0 100 .0 

Kadan–Tang 

Conservative 63 .8 57 .7 30 .5 25 .6 

Liberal 6 .0 11 .8 13 .2 12 .5 

Other 0 .2 0 .1 0 .2 1 .2 

Panel B. Upper Bound Validity Tests 

Martin–Wagner (All) 14 .2 6 .2 4 .0 3 .3 

Kadan–Tang 

Conservative 20 .5 11 .1 6 .9 3 .8 

Liberal 100 .0 100 .0 100 .0 100 .0 

Other 100 .0 100 .0 100 .0 100 .0 

Panel C. Lower Bound Tightness Tests 

Martin–Wagner (All) 0 .2 0 .0 0 .0 0 .0 

Kadan–Tang (Conservative) 0 .0 0 .0 0 .0 0 .0 

Panel D. Upper Bound Tightness Tests 

Kadan–Tang (Liberal) 2 .3 0 .1 0 .0 0 .2 

Kadan–Tang (Other) 4 .9 1 .6 3 .9 1 .2 

 

 

 

 

 

 

 

 

 

 

and Other groups. 6 So, for the Liberal and Other groups,

the results are consistent with the Kadan–Tang bound be-

ing a slack upper bound. These results for the Kadan–Tang

bound for the different δ groups are consistent with Kadan

and Tang’s analysis, which shows that the bound should be

a lower bound for low δ and an upper bound for high δ.

They are also consistent with Figs. 3.7 and 3.8 discussed in

Section 3.2 . In the remainder of the paper, we analyze the

Kadan–Tang bound exclusively for the Conservative group. 

4.3. What drives the validity results? 

Our conditional tests do not reject validity of the lower

bounds on risk premia (with the exception of the Kadan–

Tang bound for high δ groups). The conditions (19) show
6 Extending the analysis presented in Section 1 , we define D 3 as the 

squared distance in the norm defined by the inverse covariance matrix 

of the sample moment vector from the nonpositive orthant, and we de- 

fine D 4 = D 0 − D 3 , which is the squared distance from the origin minus 

the squared distance from the nonpositive orthant. We use D 3 and D 4 in 

Kodde–Palm tests to test validity and tightness of each bound as an upper 

bound on stock risk premia. 
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that validity depends on covariances of realized slackness 

with conditioning variables not being ‘too negative,’ rel- 

ative to unconditional mean slackness. It is an interest- 

ing question whether this occurs in the data because the 

bounds are good predictors of excess returns, so covari- 

ances of the predictive variables with slackness are small 

in absolute value (for example, the covariances would be 

zero if the bounds were the best available predictors), 

or whether it occurs simply because unconditional mean 

slackness is large. Our conclusion is that the latter expla- 

nation is the correct one. We determine this by running 

the same tests but replacing each bound by its time-series 

mean, so it has zero predictive power for subsequent re- 

turns. 7 We cannot reject validity of the Martin bound, the 

Chabi-Yo/Loudis bound, the Martin–Wagner bound, or the 

Kadan–Tang bound (for the Conservative group) when we 

replace the bound by its time-series mean. The results are 

tabulated in the internet appendix (Tables IA.3 and IA.4). 

Thus, we conclude that the failure to reject validity is due 

to high average slackness rather than to any predictive 

power of the bounds. This does not mean that the bounds 

lack predictive power; it simply means that any predictive 

power is irrelevant for the validity results. The remainder 

of the paper analyzes the predictive power of the bounds. 

5. Full-sample estimation 

The previous section shows that the bounds appear to 

be valid but slack. This, of course, raises the question of 

how much information the bounds contain for forecast- 

ing returns. This section reports in-sample analyses of this 

question. We find that the market bounds are correlated 

with subsequent returns, at least when we control for 

other standard predictors. For the stock bounds, the cor- 

relation with subsequent returns is primarily time-series 

correlation rather than cross-sectional correlation. 

5.1. Full-sample estimation for market bounds 

Table 5 reports predictive regressions of the market ex- 

cess return on the Martin and Chabi-Yo/Loudis bounds. We 

employ the augmented regression method of Amihud and 

Hurvich (2004) to adjust point estimates and standard er- 

rors for potential small-sample bias ( Stambaugh, 1999 ). We 

also report p-values bootstrapped under the null of no- 

predictability as detailed in Appendix B.3 . The point es- 

timate of the slope coefficient is positive for all bounds 

and horizons, but the standard errors are relatively large. 

This is consistent with evidence presented by Martin and 

by Chabi-Yo and Loudis. Those authors emphasize that we 

cannot reject that the slope coefficient is 1 and the in- 

tercept is 0, which is true in our data too. However, we 

also cannot reject that the slope coefficient is 0 in five of 

the eight regressions using Amihud–Hurvich adjusted stan- 

dard errors. Inference is similar using using bootstrapped 
7 An essentially equivalent exercise would be to reshuffle the bound in 

time so that it becomes uncorrelated with the conditioning variables, i.e., 

converting the bound to pure noise with the same mean. Both exercises 

eliminate cov (b t,T , z jt ) on the left-hand side of (19b) and leave the other 

terms in (19) unchanged. We thank a referee for suggesting these exer- 

cises. 
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Table 5 

Regressions of market excess return on bounds. 

Realized excess market returns (in percent) are regressed on a con- 

stant and the bound following the Amihud and Hurvich (2004) aug- 

mented regression method. Panel A shows predictions of market ex- 

cess returns using the Martin (2017) bounds; Panel B uses the Chabi- 

Yo and Loudis (2020) bounds. The regressions use daily observations from 

January 1990 through December 2020. Standard errors (in parentheses) 

are calculated as in Amihud and Hurvich (2004) , except for the use of 

Hansen-Hodrick standard errors (with the number of lags equal to the 

number of days in the return horizon (with a month defined as 21 days)) 

in the Amihud-Hurvich augmented regression. Statistical significance is 

represented by ∗ p < 0 . 10 , ∗∗ p < 0 . 05 , and ∗∗∗ p < 0 . 01 . The bottom row 

of each panel reports the bootstrapped p-value for the bound coefficient. 

Data is simulated under the null of no predictability, and univariate pre- 

dictive regressions (without the Amihud/Hurvich augmentation) are run 

for each simulated time-series. The bootstrapped p-value is the fraction 

of simulations with t-values that exceed the t-value for the bound coeffi- 

cient (also in a non-augmented regression) in the data. See Appendix B.3 

for details. 

Panel A. Martin Bound 

1 3 6 12 

Constant 3.46 3.34 1.83 5.01 

(4.35) (5.08) (3.18) (4.17) 

Bound 1.36 1.39 1.78 ∗∗ 1.04 

(1.23) (1.47) (0.85) (0.88) 

N 7808 7806 7743 7617 

Adj. R 2 0.011 0.022 0.047 0.020 

Bootstrap p-value 0.178 0.402 0.113 0.258 

Panel B. Chabi-Yo/Loudis Bound 

Constant 3.94 3.51 1.77 4.33 

(4.13) (4.74) (3.04) (3.93) 

Bound 1.07 1.09 1.36 ∗∗∗ 0.86 ∗∗

(0.99) (1.09) (0.53) (0.43) 

N 7808 7806 7743 7617 

Adj. R 2 0.011 0.026 0.062 0.037 

Bootstrap p-value 0.170 0.330 0.054 0.056 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 Martin and Wagner (2019) employ panel regressions of stock excess 

returns on a constant, SV IX 2 i,t,T , and SV IX 2 i,t,T − SV IX 
2 

t,T , testing if the inter- 

cept equals 0 and the two slope coefficients equal 1 and 0.5, respectively, 

as in Eq. (5) , among other tests. They report these tests using regressions 

both with and without firm fixed effects in their Tables IV and V. They 

cannot reject these null hypotheses. Our panel regressions in Panels B and 

C of Table 7 are similar to their specifications except that we estimate the 

predictive coefficient on the bound (5) rather than separately estimating 

coefficients for its components SV IX 2 i,t,T and SV IX 2 i,t,T − SV IX 
2 

t,T . 
9 We follow the definitions of these characteristics in 

Green et al. (2017) and produce them using the SAS code helpfully 

provided by Jeremiah Green on his website. 
p-values—we reject that the slope coefficient is 0 in only

two of the eight regressions (the Chabi-Yo/Loudis bound at

6 and 12 month horizons). 

Table 5 shows that the correlations of the market

bounds with subsequent returns are generally insignifi-

cant, but we obtain a different result when we control

for other standard predictors. Table 6 reports regressions

of market excess returns on the Martin bound and Goyal–

Welch variables. The results are virtually identical for the

Chabi-Yo/Loudis bound, due to the high correlation be-

tween the bounds; those results are provided in the in-

ternet appendix (Table IA.5). With controls for the Goyal–

Welch variables, the bound is significant at all horizons

using Amihud–Hurvich adjusted standard errors and at all

but the 1-month horizon using bootstrapped p-values. The

economic magnitude of the bound coefficient is large. A

one-standard-deviation increase in the 12-month bound

predicts an increase in the 12-month market excess re-

turn of over 6%. The magnitudes are even larger for shorter

horizons (in annualized terms). Note that the significance

of some of the Goyal–Welch variables in these regressions

is further evidence that the bounds are not tight: if they

were tight, then slackness would be unpredictable. 
744
5.2. Full-sample estimation for stock bounds 

We first look at cross-sectional predictability of returns 

by running Fama–MacBeth regressions. Panel A of Table 7 

reports Fama–MacBeth regressions of excess returns on the 

Martin–Wagner bound. The mean slope coefficient for the 

full panel of stocks is negative and insignificant for each 

horizon. Regressions on the Kadan–Tang bound would pro- 

duce the same results, except for a factor of 1 / 2 , due to 

the perfect correlation between the bounds in each cross- 

section. When we consider only the Conservative group of 

stocks, the point estimate of the slope is positive at each 

horizon but still insignificant. We conclude from the Fama–

MacBeth regressions that the bounds have little cross- 

sectional information about future excess returns. 

To isolate time-series predictability, we run panel re- 

gressions of stock excess returns on the bounds with stock 

fixed effects and bootstrapped standard errors. 8 We con- 

sider the full panel of stocks for the Martin–Wagner bound 

and the Conservative group for the Kadan–Tang bound. 

These regressions, reported in Panel B of Table 7 , show that 

there is time-series predictability. The slope estimates are 

uniformly positive and are strongly significant at the 6 and 

12-month horizons. 

To see if we can detect information in the bounds when 

time-series and cross-sectional variation are combined, we 

run panel regressions without fixed effects (Panel C). When 

we drop the fixed effects, the slope coefficient remains 

significant for the Kadan–Tang bound in the Conservative 

group at the longer horizons but is no longer significant 

for the Martin–Wagner bound. We conclude that the stock 

bounds have predictive power, and the predictive power 

comes from the time series rather than the cross section. 

In the internet appendix (Table IA.6), we present a ver- 

sion of Table 7 in which we include standard stock charac- 

teristics in the Fama–MacBeth and panel regressions: size, 

book-to-market, asset growth, operating profitability, and 

momentum. 9 The estimates and statistical significance of 

the bound coefficient are virtually unchanged when those 

characteristics are included. 

6. Out-of-sample analysis 

To see if the predictive power of the bounds can be de- 

tected out of sample, we calculate out-of-sample R 2 s and 

conduct Diebold and Mariano (1995) tests, using the post- 

1926 expanding window market mean as the benchmark. 

We use the same benchmark for both market and stock- 

level forecasts. We have also examined using zero as a 
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Table 6 

Regressions of market excess return on Martin bound and predictive variables. 

Realized excess market returns (in percent) are regressed on the Martin bound and variables from Welch and Goyal (2008) defined in Table 3 . The re- 

gression follows the Amihud and Hurvich (2004) multipredictor augmented regression method, assuming AR(1) processes for each predictor variable. The 

sample consists of monthly observations from January 1990 through December 2020. The predictor variables (including the bound) are standardized to 

have zero means and unit variances. Standard errors (in parentheses) are calculated as in Amihud and Hurvich (2004) , except for the use of Hansen–

Hodrick standard errors (with the number of lags equal to the number of months in the horizon) in the Amihud–Hurvich augmented regression. Statistical 

significance is represented by ∗ p < 0 . 10 , ∗∗∗ p < 0 . 05 , and ∗∗∗ p < 0 . 01 . The bottom row reports the bootstrapped p-value for the bound coefficient. Data 

is simulated under the null of no predictability, and multivariate predictive regressions (without the Amihud/Hurvich augmentation) are run for each 

simulated time-series. The bootstrapped p-value is the fraction of simulations with t-values that exceed the t-value for the bound coefficient (also in a 

non-augmented regression) in the data. See Appendix B.3 for details. 

1 3 6 12 

Constant 9.7 ∗∗∗ 9.4 ∗∗∗ 9.1 ∗∗∗ 9.4 ∗∗∗

(2.5) (2.1) (2.0) (1.9) 

Bound 36.4 ∗∗∗ 25.1 ∗∗∗ 15.0 ∗∗∗ 6.6 ∗∗∗

(9.3) (4.4) (3.2) (2.4) 

Div Price Ratio 18.7 ∗∗∗ 15.2 ∗∗∗ 12.6 ∗∗∗ 12.2 ∗∗∗

(5.4) (4.5) (4.6) (3.7) 

Earnings Price Ratio 3.8 3.3 1.9 5.1 ∗

(4.7) (3.4) (3.4) (2.8) 

Book-to-Market Ratio −6.3 −1.9 −0.1 −4.1 

(5.4) (5.0) (4.9) (4.1) 

T-bill Rate −17.4 ∗∗∗ −13.0 ∗∗∗ −12.0 ∗∗∗ −9.7 ∗∗∗

(4.6) (4.0) (3.6) (2.7) 

Term Spread −15.5 ∗∗∗ −14.1 ∗∗∗ −13.7 ∗∗∗ −10.1 ∗∗∗

(5.5) (5.1) (4.9) (3.3) 

Credit Spread −8.7 −8.4 ∗∗ −4.9 1.2 

(6.2) (4.2) (4.0) (2.9) 

Stock Variance −28.2 ∗ −13.0 −4.2 0.8 

(14.6) (10.5) (3.5) (3.4) 

Net Eq Issuance 9.2 ∗ 9.2 ∗ 10.6 ∗∗ 9.6 ∗∗

(5.5) (5.3) (5.2) (4.2) 

Inflation 9.2 −1.5 −3.0 −1.2 

(6.7) (3.8) (3.0) (1.5) 

N 371 371 368 362 

Adj. R 2 0.178 0.325 0.421 0.505 

Bootstrap p-value 0.207 0.000 0.002 0.095 

Table 7 

Regressions of excess stock returns on bounds. 

Realized stock returns in excess of the risk-free rate (in percent) are regressed on a constant and the indicated bound. The regressions use monthly 

observations from January 1996 through December 2020. Panels A reports Fama–MacBeth regressions using the Martin/Wagner bounds using all stocks 

and the Conservative subsample ( δ ≤ 3 ). (We do not report Fama–MacBeth regressions for the Kadan/Tang bound because the Fama–MacBeth coefficient 

on the Kadan/Tang bound is half that of the Martin/Wagner bound by definition.) Standard errors of the time-series average cross-sectional regression 

coefficients are Hansen-Hodrick standard errors with the number of lags equal to the number of months in the return horizon. Panels B and C report panel 

regressions with and without stock fixed effects, respectively. For the Martin/Wagner bounds, the panel regressions contain all stocks; for the Kadan/Tang 

bound, the panel regression uses the Conservative subsample. Standard errors are computed based on the bootstrap procedure described in Appendix A . 

Statistical significance is represented by ∗ p < 0 . 10 , ∗∗ p < 0 . 05 , and ∗∗∗ p < 0 . 01 . 

Panel A. Fama–MacBeth Regressions 

1 3 6 12 

Martin–Wagner (All) −0 . 17 −0 . 41 −0 . 41 −0 . 25 

(0.35) (0.4) (0.43) (0.4) 

Martin–Wagner (Conservative) 0.35 0.68 0.17 0.34 

(0.52) (0.86) (1.22) (1.12) 

Panel B. Panel Regressions with Stock Fixed Effects 

Martin–Wagner (All) 0.88 1 . 02 ∗ 1 . 31 ∗∗∗ 1 . 08 ∗∗∗

(0.66) (0.61) (0.5) (0.42) 

Kadan–Tang (Conservative) 0.67 0.65 1 . 24 ∗∗∗ 1 . 04 ∗∗∗

(0.66) (0.74) (0.44) (0.35) 

Panel C. Panel Regressions without Fixed Effects 

Martin–Wagner (All) 0.64 0.75 1.04 0.85 

(0.72) (0.67) (0.64) (0.59) 

Kadan–Tang (Conservative) 0.86 0.92 1 . 53 ∗∗∗ 1 . 27 ∗∗

(0.76) (0.86) (0.55) (0.52) 

745 
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benchmark for the stock forecasts, as in Gu et al. (2020) for

example, but we find that in our sample the market mean

is a more difficult benchmark to beat. We find that some

models outperform the benchmark, but we do not find sta-

tistical significance. 

6.1. Out-of-sample analysis of market bounds 

The out-of-sample R 2 of a bound obviously depends on

its bias (mean slackness). Even if the bias-adjusted bound

were the best possible predictor of the excess return, the

out-of-sample R 2 of the bound as a forecast will be nega-

tive if the mean slackness exceeds the standard deviation

of the bound. To see this, let s denote mean slackness, and

set u t,T = R e 
t,T 

− b t,T − s , which we assume is zero-mean

and unpredictable. Denote the mean of the bound b t,T by

b. Then, E [ R e 
t,T 

] = b + s , so, asymptotically, the benchmark

forecast is approximately b + s , and its forecast error is ap-

proximately 

R 

e 
t,T − (b + s ) = (b t,T + s + u t,T ) − (b + s ) = b t,T − b + u t,T 

On the other hand, the forecast error of the bound is 

R 

e 
t,T − b t,T = (b t,T + s + u t,T ) − b t,T = s + u t,T . 

So, in this circumstance, the out-of-sample R 2 of the bound

as a forecast is asymptotically positive if and only if the

standard deviation of the bound is greater than its mean

slackness. 

In this model, adding past mean slackness to the bound

produces a forecast with asymptotic forecast error equal to

u t,T , so the ‘bound + mean slackness’ forecast has a pos-

itive out-of-sample R 2 asymptotically. However, this fore-

cast is likely to fail to beat the benchmark in our sam-

ple due to the brevity of the 30-year sample for esti-

mating mean slackness and the much longer time se-

ries we use to estimate the mean market excess return.

Section 6.2 presents simulations that show we would likely

need 150 years of data before the ‘bound + mean slackness’

forecast would have a better than even chance of achieving

a significantly positive out-of-sample R 2 , given the 65 year

head start that we have given the market mean. 

Table 8 reports the out-of-sample R 2 s for the market re-

turn forecasts. We forecast at the end of each month for

the subsequent 1, 3, 6 and 12-month periods. 10 Row 0 of

Panel A shows that the out-of-sample R 2 of the Martin

bound is negative at every horizon. 11 Table 1 shows that

the mean slackness of the Martin bound exceeds its stan-

dard deviation at every horizon, so, as discussed above, we

would expect negative out-of-sample R 2 s for the bound as

a forecast even if the bias-adjusted bound were the best
10 We have overlapping returns and want to avoid look-ahead bias, so 

when we calculate past average slackness or run predictive regressions in 

expanding windows, we allow h months to elapse after the end of the 

window before using the results to form a forecast, where h months is 

the length of the return period. 
11 Martin (2017) reports positive out-of-sample R 2 s in his sample period 

(1996–2012) but does not test significance. Our results differ primarily 

due to our extended sample period. In particular, Fig. 6.3 below shows 

that the benchmark forecast has generally beaten the bound as a forecast 

from 2012 to 2020. Our expanding market mean benchmark differs as 

well due to Martin’s use of data going back to 1871. 

Y

746 
available predictor. Row 1 of Panel A shows that adding 

past mean slackness to the Martin bound produces a bet- 

ter forecast, which has a positive but insignificant out- 

of-sample R 2 at 3 and 6 month horizons. Fig. 6.1 shows 

the 3 and 12 month ‘bound plus mean slackness’ fore- 

casts and their cumulative squared errors compared to 

the benchmark (as in Goyal and Welch, 2003 ). The plots 

for 1 and 6 months are similar. Positive slopes in Pan- 

els (b) and (d) indicate that the forecast is outperforming 

the benchmark, and negative slopes indicate underperfor- 

mance. For both horizons, the forecast beat the benchmark 

in the late 1990s before underperforming around the turn 

of the century. Post 2002, the forecast and benchmark have 

performed similarly, aside from two notable episodes for 

the 3-month horizon: (1) the 3-month forecast substan- 

tially underperformed and then partially recovered in the 

financial crisis, and (2) the forecast substantially beat the 

benchmark in predicting the recovery from coronavirus- 

related market declines in 2020. The outperformance dur- 

ing the recovery from the coronavirus crisis resulted in 

the overall R 2 being positive at the 3-month horizon, as 

shown in Panel (b) of Fig. 6.1 and in Row 1 of Panel A of 

Table 8 . 

Row 2 of Panel A of Table 8 reports the performance 

of a forecast created by running OLS on the Martin bound 

in expanding windows. This forecast performs worse than 

using the bound as the forecast. Fig. 6.2 shows its perfor- 

mance at all horizons. The forecast has essentially no pre- 

dictive power, and in fact the regression line of subsequent 

excess returns on the forecast has a negative slope in three 

of the four cases (regressing mean excess returns on the 

mean forecast in 50 bins). The poor performance of fore- 

casts derived from running OLS on the bound is unsurpris- 

ing, given the high standard errors of the bound coefficient 

in full sample regressions. 

Rapach et al. (2010) show that an effective way to com- 

bine multiple predictors is to form individual forecasts 

based on the individual predictors and then average them. 

This is called a combination forecast. We create individual 

forecasts by running univariate regressions on the Goyal–

Welch predictors and then average them (Row 3 of Panel A 

of Table 8 ). We also average (50–50) this combination fore- 

cast with the ‘bound plus past mean slackness’ forecast, 

thereby producing another combination forecast (Row 4 of 

Panel A of Table 8 ). 12 As Panel A shows, these forecasts 

based upon the Martin bound do not beat the benchmark. 

It is interesting, however, that the combination forecast is 

improved at every horizon by averaging it with the bound- 

based forecast, though the improvement is statistically in- 

significant in Diebold–Mariano tests (Row 5 of Panel A of 

Table 8 ). 

Panel B of Table 8 repeats Panel A but using the Chabi- 

o/Loudis bound instead of the Martin bound. The results 

are very similar with the notable exception that using the 
12 We also computed forecasts by running multivariate regressions on 

the Goyal–Welch variables and on the Goyal–Welch variables and the 

Martin (or Chabi-Yo/Loudis) bound, and we computed forecasts from 

those variables using partial least squares ( Kelly and Pruitt, 2013 ). None 

of those forecasts ever beat the benchmark, so we did not tabulate the 

results. 
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Table 8 

Out-of-sample tests of market forecasts. 

Out-of-sample R 2 s are computed for forecasts of the market excess return. Out-of-sample R 2 is defined as 

R 2 OOS = 1 −
∑ 

t ε 
2 
t ∑ 

t ν
2 
t 

, 

where ε t is the error when a particular forecast is used and νt is the error when the benchmark forecast is used. The benchmark forecast for rows (0) to 

(4) is the expanding window average market excess return (using the Fama–French market excess return series starting in 1926). The benchmark forecast in 

the last row is the combination forecast (4) that uses only the Welch and Goyal (2008) predictors. Forecast (0) is simply the Martin (2017) or Chabi-Yo and 

Loudis (2020) bound. Forecast (1) is the bound + past average slackness. Forecast (2) is a linear models of excess returns regressed on a constant and 

the bound. Forecast (3) is a combination forecast of linear models; each month’s forecast is the equal-weighted average of linear models using a single 

Welch and Goyal (2008) predictor. Forecast (4) is an equal-weighted average of forecast (3) and (1). Panels A and B report R 2 s for these forecasts using the 

Martin (2017) and Chabi-Yo and Loudis (2020) bound, respectively. Panels C and D report R 2 s using forecasts that are truncated below at either the bound 

(forecasts (2) and (4)) or at zero (forecast (3)). The expanding window regressions use monthly observations from January 1990 through December 2020. 

To ensure our results are not contaminated by look-ahead bias, we allow h months to elapse after the end of the window before using the results to form a 

forecast, for return horizon h . The initial estimation window uses the first 60 months of bound observations and the first 60+ h months of realized returns. 

For each model, p -values for Diebold–Mariano tests are calculated using Hansen–Hodrick standard errors with the number of lags equal to the number of 

months in the return horizon and are reported in the internet appendix. Statistical significance is represented by ∗ p < 0 . 10 , ∗∗ p < 0 . 05 , and ∗∗∗ p < 0 . 01 . 

Positive R 2 values are shaded gray. 

 

 

 

 

Chabi-Yo/Loudis bound as the forecast (Row 0 of Panel

B of Table 8 ) beats the benchmark at all horizons other

than 1 month (though the outperformance is insignifi-

cant). 13 The difference between the two bounds in this re-
747 
gard is not unexpected, given that Table 1 shows that the 

mean slackness of the Chabi-Yo/Loudis bound is less than 

that of the Martin bound at every horizon. Table 1 also 
13 Chabi-Yo and Loudis report positive out-of-sample R 2 s for all horizons 

in their sample of 1996–2015 (their Table 7B) but do not test significance. 
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Fig. 6.1. Forecast and cumulative squared errors. 

The market excess return at different horizons is forecast monthly as the Martin bound plus expanding-window mean slackness. Panels (a) and (c) show 

the forecast and the benchmark, which is the post-1926 expanding window market mean, at 3 and 12 month horizons. Panels (b) and (d) show the 

cumulative squared error of the benchmark minus the cumulative squared error of the bound-based forecast at 3 and 12 month horizons. 

Fig. 6.2. OLS forecast from Martin bound and subsequent returns. 

Forecasts of market excess returns at different horizons are computed monthly by running OLS on the Martin bound in expanding windows. The monthly 

forecasts are sorted into 50 groups, and the mean forecast and mean subsequent excess return are computed within each group. The red solid line is the 

regression line through the 50 points. The green dashed line is the 45 ◦ line. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

shows that the volatility of the Chabi-Yo/Loudis bound is

greater than or roughly equal to its mean slackness at

every horizon, so, as discussed before, we would expect

positive out-of-sample R 2 s asymptotically for the bound

as a forecast if the bias-adjusted bound were the best

possible predictor. The difference in performance of the

bounds as forecasts is shown in Fig. 6.3 . The better perfor-

mance of the Chabi-Yo/Loudis bounds at the longer hori-

zons has been concentrated in the post-financial crisis

period. 
748 
Campbell and Thompson (2008) show that market ex- 

cess return forecasts can be improved by constraining the 

forecasts to be nonnegative. It is likewise reasonable to 

constrain forecasts based on a lower bound to be at least 

as large as the lower bound. Panels C and D of Table 8 re- 

peat Panels A and B but using truncated forecasts. The 

combination forecast that uses only the Goyal–Welch vari- 

ables is truncated at zero, and the other forecasts are trun- 

cated at the bound. Truncation improves the forecasts in 

almost every case. With truncation, the combination fore- 
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Fig. 6.3. Cumulative squared errors of market bounds. 

For each horizon, the panels show the cumulative sum of squared errors of the benchmark minus the cumulative squared error of using the indicated 

bound as the forecast. The benchmark is the post-1926 expanding window market mean. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cast that averages the bound with the combination fore-

cast from the Goyal–Welch variables (Row 4) outperforms

the market at the 6-month horizon for both bounds and

at the 3-month horizon for the Chabi-Yo/Loudis bound, but

the improvement is insignificant. 

An interesting fact shown in Table 8 is that none of

the forecasts beats the benchmark at the 1-month horizon.

Furthermore, only one of the forecasts (the Chabi-Yo/Loudis

bound) beats the benchmark at the 12-month horizon. Pre-

dictability peaks at 6 months, with the Chabi-Yo/Loudis

bound forecast reaching an out-of-sample R 2 of 4.3%. 

6.2. How much data is needed to detect a market bound’s 

forecasting power? 

In this section, we use simulations as described

in Appendix B.4 to determine how long a sample we would

need to reliably detect that a bound or a bound plus

past average slackness outperforms the expanding-window

market mean when the bound is tight or when the bound

is valid but slack. We look at both out-of-sample R 2 s and

p-values of the Diebold–Mariano test. 

Fig. 6.4 plots distributions of simulated out-of-sample

R 2 s as a function of the sample length. The simulation is

calibrated to the Martin bound at the 12-month horizon.

As in our empirical setting, we use an expanding-window

mean excess return as a benchmark forecast, and we as-

sume that there are 65 years of realized returns prior to

the first bound observation. The volatility of the bound in

the simulation is the same as in the data (2.1% as shown in

Table 1 ). When we simulate with a slack bound, we take

slackness to be 5%. Panels (a) and (b) show that, with a

30-year sample, we expect (with a probability near 75%)

to obtain a positive out-of-sample R 2 using the bound as

the forecast if the bound is tight and (again with a prob-
749 
ability near 75%) a negative out-of-sample R 2 if the bound 

is slack. Our empirical results of positive slackness and a 

negative out-of-sample R 2 are consistent with this. As the 

horizon lengthens, the simulation results in Panels (a) and 

(b) approach the asymptotic results that the bound is a 

better forecast than the benchmark if the bound is tight 

and a worse forecast if the bound is slack (given that slack- 

ness in the calibration is higher than the bound volatility). 

Adding mean slackness to the bound to forecast will 

beat the market mean benchmark in the long run, un- 

der the hypotheses of our simulation. This can be seen in 

Panel (c). However, Panel (c) also shows that, with a 30- 

year sample, we expect (with a probability near 75%) to 

obtain a negative out-of-sample R 2 using ‘bound + mean 

slackness’ as the forecast. This is because errors in esti- 

mating mean slackness cause the ‘bound + mean slackness’ 

forecast to be inferior to the market mean (which has a 65 

year head start) for shorter samples, even though it is su- 

perior in the long run. Panel (c) shows that we would need 

150 years of data before the ’bound + mean slackness’ fore- 

cast would generate a positive out-of-sample R 2 with 50% 

probability. 

We would need even more than 150 years before the 

outperformance of the ‘bound + mean slackness’ fore- 

cast would be statistically significant. Fig. 6.5 plots dis- 

tributions of p-values from Diebold–Mariano tests for 

the simulations. Panel (c) shows that we would need 

around 500 years of data before reaching a 50% proba- 

bility of finding statistically significant outperformance by 

the ‘bound + mean slackness’ forecast. Even if the bound is 

tight and we use the bound as the forecast, we would need 

150 years of data before reaching a 50% chance of finding 

statistically significant forecasting ability (Panel (a)). 

The results differ somewhat if we calibrate the sim- 

ulations to the Chabi-Yo/Loudis bound. Figs. 6.6 and 6.7 
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Fig. 6.4. Simulated out-of-sample R 2 s: Martin calibration. 

Each panel plots distributions of simulated out-of-sample R 2 s for various sample lengths. The forecasts are either a tight bound (panels (a) and (b)) or the 

bound plus an expanding window average realized slackness (Panel (c)). The initial estimation window for average slackness is 60 months. The benchmark 

forecast is an expanding window mean excess return with 65 years of realized returns available prior to the first bound observation, as in our empirical 

setting. The simulations are calibrated using the 12-month Martin bound. For Panel (a), returns are simulated assuming the bound is tight. For Panel (b), 

returns are simulated assuming the bound is slack (5% per year). The results in Panel (c) are the same under either data-generating process, because any 

non-zero mean slackness contributes the same to the forecasts as it does to the returns. Some outliers in Panel (c) are suppressed for legibility. Each 

panel is based on 10 0 0 simulations. The dashed red line represents the average out-of-sample R 2 across simulations. The solid black line within each box 

represents the median. The box represents the interquartile range, and the whiskers extend no more than 1.5 times the interquartile range from the edge 

of the box. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

plot distributions of simulated out-of-sample R 2 s and p-

values from Diebold–Mariano tests, respectively, for simu-

lations calibrated to the 12-month Chabi-Yo/Loudis bound.

The simulated bound has the same volatility as the 12-

month Chabi-Yo/Loudis bound (3.47% as shown in Table 1 ).

When we simulate with a slack bound, we take slackness

to be 4%. 

With this calibration and a slack bound, the out-of-

sample R 2 of the bound is positive with about 50% prob-

ability with 30 years of data, though the probability de-

creases as the sample period increases (Panel b). The out-

of-sample R 2 of the ‘bound + mean slackness’ forecast is

also positive with about 50% probability with 30 years
750 
of data, and the probability increases as the sample pe- 

riod increases (Panel c). However, we would still need 

a fairly long sample before the outperformance of the 

‘bound + mean slackness’ forecast would be statistically 

significant. Panel (c) of Fig. 6.7 shows that we would need 

between 150 and 200 years before reaching a 50% proba- 

bility of finding statistically significant outperformance. 

6.3. Out-of-sample analysis of stock bounds 

As with the market bounds, we consider the stock 

bounds as forecasts and also examine OLS and combina- 
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Fig. 6.5. Simulated Diebold–Mariano p-values: Martin calibration. 

Each panel plots distributions of simulated Diebold–Mariano p-values for various sample lengths. The forecasts are either a tight bound (panels (a) and 

(b)) or the bound plus an expanding window average realized slackness (Panel (c)). The initial estimation window for average slackness is 60 months. The 

benchmark forecast is an expanding window mean excess return with 65 years of realized returns available prior to the first bound observation, as in our 

empirical setting. The simulations are calibrated using the 12-month Martin bound. For Panel (a), returns are simulated assuming the bound is tight. For 

Panel (b), returns are simulated assuming the bound is slack (5% per year). The results in Panel (c) are the same under either data-generating process, 

because any non-zero mean slackness contributes the same to the forecasts as it does to the returns. Each panel is based on 10 0 0 simulations. The dashed 

red line represents the average p-value across simulations. The solid black line within each box represents the median. The box represents the interquartile 

range, and the whiskers extend no more than 1.5 times the interquartile range from the edge of the box. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

tion forecasts based on the bounds. 14 Motivated by the

results in Section 5.2 , we want to isolate time-series vari-

ation and cross-sectional variation. Let f it denote the fore-

casted excess return of stock i at date t and, for the sake of

brevity, let r it denote the realized excess return denoted by

R e 
i,t,T 

before. Let f̄ t and r̄ t denote the cross-sectional means

at date t . Given T time periods and N t stocks in the cross
14 We also investigated forecasting models based on multivariate regres- 

sions on stock characteristics, the Goyal–Welch variables, and the bounds, 

and we evaluated training a random forest on polynomials of those vari- 

ables. However, the multivariate and random forest models never beat the 

benchmark. 
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section at date t , the mean squared forecast error for the 

panel is 

1 

T 

T ∑ 

t=1 

1 

N t 

N t ∑ 

i =1 

(r it − f it ) 
2 

= 

1 

T 

T ∑ 

t=1 

1 

N t 

N t ∑ 

i =1 

(r it − r̄ t + ̄r t − f̄ t + f̄ t − f it ) 
2 

= 

1 

T 

T ∑ 

t=1 

( ̄r t − f̄ t ) 
2 + 

1 

T 

T ∑ 

t=1 

1 

N t 

N t ∑ 

i =1 

[
(r it − r̄ t ) − ( f it − f̄ t ) 

]
2 . 

(20) 
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Fig. 6.6. Simulated out-of-sample R 2 : Chabi-Yo/Loudis calibration. 

Each panel plots distributions of simulated out-of-sample R 2 s for various sample lengths. The forecasts are either a tight bound (panels (a) and (b)) or the 

bound plus an expanding window average realized slackness (Panel (c)). The initial estimation window for average slackness is 60 months. The benchmark 

forecast is an expanding window mean excess return with 65 years of realized returns available prior to the first bound observation, as in our empirical 

setting. The simulations are calibrated using the 12-month Chabi-Yo/Loudis bound. For Panel (a), returns are simulated assuming the bound is tight. For 

Panel (b), returns are simulated assuming the bound is slack (4% per year). The results in Panel (c) are the same under either data-generating process, 

because any non-zero mean slackness contributes the same to the forecasts as it does to the returns. Some outliers in Panels (b) and (c) are suppressed 

for legibility. Each panel is based on 10 0 0 simulations. The dashed red line represents the average out-of-sample R 2 across simulations. The solid black 

line within each box represents the median. The box represents the interquartile range, and the whiskers extend no more than 1.5 times the interquartile 

range from the edge of the box. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

The first term on the right-hand side of (20) is a time-

series mean squared error: it measures how well the aver-

age forecast each period predicts the average return each

period. The second term measures how well the deviation

of a forecast from the mean forecast predicts the devia-

tion of a return from the mean return. Thus, the first term

measures the time series information in the forecast, and

the second term measures the cross-sectional information

in the forecast. We compute out-of-sample R 2 s for each of

the two terms by comparing each term to the correspond-

ing calculation based on using the benchmark as the fore-

cast. At the end of this section, we also look at portfolio
752 
returns from sorting stocks on the bounds. Those results 

provide additional information about the predictive power 

of the bounds in the cross section. 

Row 0 of Panel A of Table 9 shows that the Martin–

Wagner bound outperforms the benchmark in both the 

cross section and the time series, except for the 3-month 

horizon for the cross section. However, the outperformance 

in the cross section is an order of magnitude smaller 

than the outperformance in the time series. The total 

R 2 is a blend of the time-series and cross-section R 2 s, 

with more weight on the cross-section because most of 

the squared errors for the benchmark come from the 
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Fig. 6.7. Simulated Diebold–Mariano p-values Chabi-Yo/Loudis calibration. 

Each panel plots distributions of simulated Diebold–Mariano p-values for various sample lengths. The forecasts are either a tight bound (Panels (a) and 

(b)) or the bound plus an expanding window average realized slackness (Panel (c)). The initial estimation window for average slackness is 60 months. The 

benchmark forecast is an expanding window mean excess return with 65 years of realized returns available prior to the first bound observation, as in our 

empirical setting. The simulations are calibrated using the 12-month Chabi-Yo/Loudis bound. For Panel (a), returns are simulated assuming the bound is 

tight. For Panel (b), returns are simulated assuming the bound is slack (4% per year). The results in Panel (c) are the same under either data-generating 

process, because any non-zero mean slackness contributes the same to the forecasts as it does to the returns. Each panel is based on 10 0 0 simulations. 

The dashed red line represents the average p-value across simulations. The solid black line within each box represents the median. The box represents the 

interquartile range, and the whiskers extend no more than 1.5 times the interquartile range from the edge of the box. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 

 
cross section. 15 It is positive at every horizon but never

significant. 16 
15 Let MSE b denote total mean-squared error for the benchmark (left- 

hand side of (20) for the benchmark forecast) and MSE TS 
b and MSE CS 

b de- 

note its time-series and cross-sectional components (right-hand side of 

last line of (20) for the benchmark forecast). Total R 2 is a weighted aver- 

age of the time-series and cross-sectional R 2 s: 

R 2 = 

(
1 − MSE CS 

b 

MSE b 

)
R 2 TS + 

MSE CS 
b 

MSE b 
R 2 CS . 

16 Martin and Wagner report out-of-sample R 2 s relative to a number of 

benchmarks, including historical average excess returns of the S&P 500, a 

753 
The OLS forecast in Row 1 of Panel A of Table 9 is 

derived from an expanding-window panel regression on 

the Martin–Wagner bound. The forecast underperforms the 

benchmark at every horizon. This mirrors the results for 

the market bounds. The combination forecast in Row 2 of 

Panel A of Table 9 is an average of forecasts derived from 

expanding-window panel regressions on individual stock 
CRSP value-weighted index and a constant 6% return per year, for their 

sample (their Table IX). In their sample (1996–2014), out-of-sample R 2 s 

are positive at all horizons except the 1 month horizon for certain bench- 

marks. They do not test whether any positive out-of-sample R 2 s are sig- 

nificant. 
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Table 9 

Out-of-sample tests of stock forecasts. 

Out-of-sample R 2 s are computed for monthly forecasts of stock excess returns. Out-of-sample R 2 is defined as 

R 2 OOS = 1 −
∑ 

t MSE f,t ∑ 

t MSE b,t 

, 

where MSE f,t ( MSE b,t ) is the cross-sectional mean of squared forecast errors for forecast f (benchmark b) for month t . The benchmark model is the 

expanding window average market excess return (using the Fama-French market excess return series starting in 1926). Forecast (0) is simply the Martin–

Wagner or Kadan–Tang bound. Forecast (1) uses an expanding-window panel regressions of excess returns on a constant and the bound. Forecast (2) is 

a combination forecast of linear models; each month’s forecast is the equal-weighted average of univariate expanding-window panel regressions using a 

single stock characteristic (size, book-to-market, asset growth, operating profitability, or momentum). Forecast (3) is an equal-weighted average of forecast 

(2) and (0). For forecast (0), the table reports R 2 s using total MSE as well as versions using only the cross-sectional and time-series components of MSE

defined in Eq. 20 . Panels A and B report R 2 s for forecasts using the Martin and Wagner (2019) bounds for the full sample of stocks and the Kadan and 

Tang (2020) bound for the Conservative stock subsample ( δ ≤ 3) , respectively. Panels C and D report R 2 s using forecasts that are truncated below at 

either the bound (forecasts (1) and (3)) or at zero (forecast (2)). The expanding window regressions use monthly observations from January 1996 through 

December 2020. To ensure our results are not contaminated by look-ahead bias, we allow h months to elapse after the end of the window before using the 

results to form a forecast, for return horizon h . The initial estimation window uses the first 60 months of bound observations and the first 60+ h months of 

realized returns. For each model, Diebold–Mariano tests are performed using the time-series of differences in MSE b,t and MSE f,t as the outcome variable. 

p -values for these tests are calculated using Hansen-Hodrick standard errors with the number of lags equal to the number of months in the return horizon 

and are reported in the internet appendix. Statistical significance is represented by ∗ p < 0 . 10 , ∗∗ p < 0 . 05 , and ∗∗∗ p < 0 . 01 . Positive R 2 values are shaded 

gray. 

 

 

 

 

 

 

 

 

 

characteristics: size, book-to-market, asset growth, operat-

ing profitability, and momentum. The second combination

forecast reported in the table (Row 3 of Panel A) is an av-

erage of the first forecast and the Martin–Wagner bound.

Whereas the combination forecast based on the stock char-

acteristics always underperforms the benchmark, the fore-

cast that includes the Martin–Wagner bound always out-

performs the benchmark, reaching an out-of-sample R 2 of

2.1% at the 12-month horizon. However, the overperfor-

mance is insignificant based on the Diebold–Mariano test. 
754 
Panel B of Table 9 repeats Panel A but using the Kadan–

Tang bound and only stocks in the Conservative group. The 

only case in which a model outperforms the benchmark 

in Panel B is the combination forecast that averages the 

bound with the combination forecast from the stock char- 

acteristics (Row 3). 

Figs. 6.8 and 6.9 show the cumulative squared errors 

of the Martin–Wagner bound and the Kadan–Tang bound 

as forecasts compared to the benchmark squared errors. 

Fig. 6.8 is for the full panel of stocks, and Fig. 6.9 is 
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Fig. 6.8. Cumulative squared errors for all stocks. 

For each horizon, the panels show the cumulative sum of squared errors of the benchmark minus the cumulative squared error of using the indicated 

bound as the forecast. The benchmark is the post-1926 expanding window market mean. The sample consists of all stocks in our dataset. 

Fig. 6.9. Cumulative squared errors for conservative stocks. 

For each horizon, the panels show the cumulative sum of squared errors of the benchmark minus the cumulative squared error of using the indicated 

bound as the forecast. The benchmark is the post-1926 expanding window market mean. The sample consists of the Conservative group of stocks. 

 

 

 

 

 

 

 

 

 

for the Conservative group of stocks. The squared er-

rors are averaged in each cross section and then accu-

mulated over time. The plots end in positive territory

for the Martin–Wagner bound, meaning that the out-

of-sample R 2 is positive, as shown in Table 9 . How-

ever, they end in negative territory for the Kadan–Tang

bound. The figures show that the Martin–Wagner bound

outperforms the Kadan–Tang bound in terms of mean

squared errors, for both the full panel and the Conservative

group. 
755 
Panels C and D of Table 9 report the results of trun- 

cating forecasts, either at zero (for the combination fore- 

cast that does not use a bound) or at the bound. As for the 

market forecasts, truncation of the stock forecasts improves 

the forecasts. For the Conservative group, the combination 

forecast using the Kadan–Tang bound has statistically sig- 

nificant outperformance at the 6 and 12 month horizons 

(Row 3 of Panel D). 

We take a further look at cross-sectional predictabil- 

ity by sorting stocks on the bound and computing port- 
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Table 10 

Portfolios from sorts on bounds. 

Stocks are sorted into quintiles monthly based on the Martin–Wagner/Kadan–Tang bound. Mean annualized forward returns at horizons of 1, 3, 6, and 12 

months are computed for each quintile each month. The bottom part of each panel presents statistics (mean, CAPM alpha, and five-factor Fama–French 

alpha) for the difference between the top quintile return and the bottom quintile return with standard errors in parentheses. The standard errors are 

Hansen–Hodrick standard errors with number of lags equal to the length of the horizon. Statistical significance is represented by ∗ p < 0 . 10 , ∗∗ p < 0 . 05 , 

and ∗∗∗ p < 0 . 01 . The sample in Panel A is the full sample of stocks. The sample in Panel B is the Conservative stock subsample ( δ ≤ 3) . 

Panel A. All Stocks 

1 3 6 12 

1 (Low) 7.21 7.76 7.87 7.97 

2 9.62 9.34 9.27 9.17 

3 10.94 10.28 9.77 9.34 

4 10.49 10.41 10.31 9.58 

5 (High) 10.49 9.95 9.69 9.90 

5-1: Mean 3.29 2.19 1.82 1.93 

(5.22) (5.11) (5.30) (4.60) 

5-1: CAPM α 2.32 2.41 2.08 2.14 

(5.10) (5.26) (5.43) (4.78) 

5-1: Fama–French α 5.04 3.31 2.77 3.28 

(5.36) (5.09) (5.17) (4.64) 

Panel B. Conservative Stocks 

1 3 6 12 

1 (Low) 6.18 6.29 6.22 6.10 

2 6.19 7.25 6.91 7.34 

3 8.02 7.96 7.44 8.71 

4 9.28 9.15 8.29 9.39 

5 (High) 12.01 9.79 8.72 7.99 

5-1: Mean 5.83 ∗ 3.51 2.5 1.88 

(3.01) (3.19) (3.31) (2.92) 

5-1: CAPM α 5.02 ∗ 3.63 2.82 2.14 

(2.88) (3.34) (3.39) (2.94) 

5-1: Fama–French α 4.59 2.92 2.26 1.79 

(3.59) (3.56) (3.48) (3.08) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

folio returns. The Martin–Wagner and Kadan–Tang bounds

produce identical results for this exercise, because they are

perfectly correlated in each cross section, as discussed pre-

viously. Table 10 reports the average returns of equally-

weighted quintile portfolios for the panel of all stocks and

for the Conservative group. There is some monotonicity

across quintiles, and the top quintile has a higher aver-

age return than the bottom quintile for both groups and

all horizons. Furthermore, the point estimates of the CAPM

alpha and five-factor Fama–French alpha for the 5-1 re-

turn are positive for both groups and all horizons. How-

ever, there is statistical significance only for the mean and

CAPM alpha for the Conservative group at the 1-month

horizon. This is consistent with our previous conclusion

that the predictive power of the bounds comes primarily

from the time series. 

7. Conclusion 

The recently developed option-based bounds are impor-

tant advances in forecasting returns, making novel use of

option prices to bound expected returns. Using conditional

tests, we cannot reject validity, but we do reject tight-

ness. In full-sample analyses, the market bounds are pos-

itively correlated with subsequent realized returns when

we control for the Goyal–Welch variables, and the stock

bounds are positively correlated with subsequent realized

returns when we include stock fixed effects. Out-of-sam ple
756 
tests are inconclusive—bound-based forecasts sometimes 

beat the historical average market excess return bench- 

mark, but the outperformance is not statistically signifi- 

cant in our relatively short sample period. The data show 

that at the market level the best out-of-sample perfor- 

mance comes from the Chabi-Yo/Loudis bound, at the stock 

level the best out-of-sample performance comes from the 

Martin–Wagner bound, and most of the stock performance 

both in sample and out of sample comes from the time se- 

ries rather than the cross section. Adding past mean slack- 

ness to the bounds appears to be a promising forecasting 

approach, but we have a much longer historical period for 

estimating the mean market return than we do for esti- 

mating mean slackness of the bounds. Simulations for the 

market bounds show that we may need another century 

or more of data before the ‘bound + past mean slackness’ 

forecast can be expected to consistently generate positive 

out-of-sample R 2 s relative to the market-mean benchmark. 

Additional research on the determinants of bound slack- 

ness may be useful to improve the performance of the 

bounds for forecasting. 
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Appendix A. Implementing the Kodde–Palm tests 

Let w ( N, i, �) denote the probability that i of the N el-

ements of ˆ λ are strictly positive, under the hypothesis that

the population mean vector λ is zero. To test whether a

bound is valid, our null hypothesis is that λ ≥ 0 . For any

critical value c, the size of the test, conditional on the co-

variance matrix �, is defined to be 

sup 

λ≥0 

Pr ( D 1 ≥ c | �) , 

where D 1 is defined in Eq. (11) . According to Kodde and

Palm (1986) , the asymptotic size is 

sup 

λ≥0 

Pr ( D 1 ≥ c | �) = 

N ∑ 

i =0 

Pr 
[
χ2 (N − i ) ≥ c 

]
w ( N, i, �) . 

(A.1)

To test whether a bound is tight, our null hypothesis

is that λ = 0 . For any critical value c, the asymptotic

size of the bound tightness test, according to Kodde and

Palm (1986) is 

Pr ( D 2 ≥ c | �) = 

N ∑ 

i =0 

Pr 
[
χ2 (i ) ≥ c 

]
w ( N, i, �) . (A.2)

For i = 0 , the chi-square distribution function is defined as

the point mass at the origin (i.e., Pr 
[
χ2 (0) ≥ c 

]
= 0 for c >

0 ). 

The weights w are complicated to calculate analyti-

cally (for additional details see Kudo, 1963; Gourieroux

et al., 1982; Wolak, 1989 ). For this reason, Kodde and

Palm (1986) provide upper and lower bounds on the

critical values that circumvent the need to calculate the

weights unless the test statistic falls within the bounds.

In order to obtain p-values, we follow Wolak (1989) and

calculate the weights through simulation. Specifically, we

simulate 10,0 0 0 draws of N random variables from a multi-

variate normal distribution with mean zero and covariance

matrix �. For each draw λs ∈ R 

N , define 

ˆ λs = arg min λ≥0 ( λ − λs ) 
′ 
�−1 ( λ − λs ) . (A.3)

The weights w ( N, i, �) are estimated as the fraction of the

10,0 0 0 draws for which 

ˆ λs has exactly i elements greater

than zero. Using these estimated weights, we then com-

pute p values by evaluating Eqs. (A.1) and (A.2) at the test

statistics. 

For tests of stock-level bounds, we estimate the co-

variance matrix � using a block bootstrap procedure to

account for time-series and cross-sectional dependencies
757 
similar to that used by Martin and Wagner (2019) . We gen- 

erate 10 0 0 bootstrap samples from the original panel of 

bounds, forward returns, stock characteristics, and Goyal–

Welch variables. Each sample consists of blocks (overlap- 

ping and circular) of h consecutive dates, including all 

stocks in the panel at each date, where h is the horizon. 

Appendix B. Simulations 

We calibrate and simulate a model for returns and 

bounds over an horizon consisting of T days. We variously 

take T = 21 , T = 63 , T = 126 , and T = 252 . Let r t denote

the excess return on day t . Let μt denote the conditional 

mean of r t+1 given information through day t . We assume 

the mean process is AR(1): 

μt+1 = ( 1 − a ) μ + aμt + u t+1 , (B.1) 

where the u t form a mean-zero iid series. We assume that 

r t+1 = μt + v t+1 , (B.2) 

where the v t also form a mean-zero iid series that are pos- 

sibly contemporaneously correlated with the u t . Ignoring 

compounding, define the forward excess return starting at 

the end of day t (which we previously denoted by R e 
t,T 

) as 

R t = 

T ∑ 

i =1 

r t+ i . (B.3) 

Using iterated expectations and the AR(1) specification we 

can compute that the mean of R t given information at the 

end of day t is (T − θ ) ̄μ + θμt , where 

θ = 

1 − a T 

1 − a 
. (B.4) 

We assume the bound is the mean of the forward return 

minus a constant slackness, namely, 

b t = (T − θ ) ̄μ + θμt − s . (B.5) 

This implies that b is also an AR(1) process: 

b t+1 = (1 − a ) ̄b + ab t + θu t+1 . (B.6) 

where b̄ = T μ̄ − s . Furthermore, we can solve (B.5) for μt 

as 

μt = 

b t − (T − θ ) ̄μ + s 

θ
= 

b̄ + s 

T 
+ 

b t − b̄ 

θ
. (B.7) 

It follows that the daily return is 

r t = 

b̄ + s 

T 
+ 

b t−1 − b̄ 

θ
+ v t . (B.8) 

Assume the logs of the conditioning variables form a 

VAR(1) system with monthly time steps: 

x m +1 = (I − A ) ̄x + Ax m 

+ w m +1 , (B.9) 

where the innovation vectors w m 

are mean-zero iid pro- 

cesses. 
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B1. Calibration 

We fit the autoregression (B.6) to the bound series to

estimate the parameters a and b̄ . Given a , we compute

θ from (B.4) and then infer the shocks u t to the daily

mean excess return from θ and from the fitted residuals

of the bound autoregression (B.6) . We infer the daily re-

turn shocks v t from (B.8) , taking s to be empirical mean

slackness. We fit the VAR (B.9) to the logs of the positive

Goyal–Welch variables. 

B2. Finite sample inference for validity and tightness tests 

To conduct finite sample inference for the validity and

tightness test statistics, we simulate the model by first

drawing the initial bound b 0 from the stationary distri-

bution of the AR(1) process (B.6) , assuming normality. To

simulate under the null that a bound is tight, we fix mean

slackness s to be zero and construct the bounds b, daily

excess returns r and forward excess returns R from (B.6),

(B.8) , and (B.3) , using the fitted value of θ and bootstrap-

ping the shocks u and v in blocks of 12 months from the

fitted values. We draw x 0 from the stationary distribution

of the VAR(1) process (B.9) , assuming normality, and con-

struct the x series from (B.9) , bootstrapping the shocks w

in blocks of 12 months from the fitted residuals of the

VAR(1). We use a circular bootstrap, and we use the fitted

u , v , and w series from the same block of 12 months each

time to preserve contemporaneous correlations. We expo-

nentiate the x series to obtain simulated positive condi-

tioning variables for use in the validity and tightness tests.

We run 10 0 0 simulations to obtain finite sample distribu-

tions of the validity and tightness test statistics. 

B3. Bootstrapped predictive regressions under null of no 

predictability 

As an alternative to inference using the Amihud and

Hurvich (2004) augmented regression methodology, we

simulate to estimate the distribution of predictive re-

gression coefficients under the null of no predictability.

We simulate as in Appendix B.2 except that we replace

(B.8) with 

r t = r̄ + v t , (B.10)

where r̄ is the sample mean daily return, and we sample

in blocks of h months where h is the length of the horizon.

For the monthly predictive regressions, we sample blocks

of months, using all daily fitted values of u and v within

each sampled month along with the monthly fitted value

of w . We use the last observation in a month of the simu-

lated daily series of forward excess return R and bound b in

the monthly regressions. We run 10 0 0 simulations for each

sample and record the t-value for the bound in univariate

daily or multivariate monthly predictive regressions. The

bootstrapped p-value is the fraction of simulations with t-

values that exceed the t-value for the bound coefficient in

the actual data. 
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B4. Simulation of out-of-sample R 2 

To consider the out-of-sample performance of the 

bound relative to an expanding mean return benchmark, 

we simulate daily time-series of 65 + T b years for for- 

ward excess returns R and bounds b, where T b denotes the 

horizon over which the bounds are assumed available to 

the econometrician. Using the fitted series of u t and v t 
from the calibration described in Appendix B.1 , we com- 

pute the sample covariance matrix ̂ �u v of the innovations 

u t and v t . We draw the initial bound b 0 from the station- 

ary distribution of the AR(1) process (B.6) , assuming nor- 

mality. We draw the innovation vectors (u t , v t ) indepen- 

dently for each day t from the normal distribution with 

mean vector (0 , 0) ′ and covariance matrix ̂ �u v . For a given 

level of assumed slackness s , we construct the bounds b, 

daily excess returns r and forward excess returns R from 

(B.6), (B.8) , and (B.3) . Since we employ monthly frequency 

data in our empirical out-of-sample tests, we convert the 

simulated time-series to monthly observations by sampling 

every 21st observation. 

For each simulation, we calculate out-of-sample R 2 s and 

Diebold–Mariano p-values for two forecasts relative to an 

expanding mean return benchmark. As in our empirical 

setting, the expanding mean return uses the initial 65 

years of simulated data, and we assume the econometri- 

cian can only observe the bound starting in the 66th year. 

We consider out-of-sample performance in the last T b − 5 

years of simulated data, using five years of observations of 

the bound and returns as an initial estimation window of 

bound slackness. We consider two forecast methods incor- 

porating the bound. The first forecast is simply the simu- 

lated bound. The second forecast is the simulated bound 

plus an expanding window estimate of bound slackness. 

Appendix C. Calculating the bounds 

We follow Martin (2017) ; Chabi-Yo and Loudis (2020) ; 

Martin and Wagner (2019) ; Kadan and Tang (2020) to com- 

pute the bounds. We annualize all the bounds by dividing 

by T − t . This appendix explains the computation of the 

nonannualized bounds. 

C1. Market-level bounds 

We use option prices from Option Metrics tables op- 

prcdYYYY, where YYYY is the year of each observation, 

ranging from 1996 to 2019. For 1990–1995 and 2020–2021, 

we use option price data from CBOE. We perform the fol- 

lowing steps to clean the data. 

1. From the CBOE data prior to 1996, keep option roots 

corresponding to S&P500. 

2. From both the CBOE and Option Metrics data, keep only 

standard options and drop all others, including weekly 

and quarterly options. 

3. Drop options with missing bid or ask prices. This in- 

cludes codes 998 and 999 in the CBOE data. 

4. Merge the data with S&P500 closing prices for each 

date. 

5. Calculate option prices as the midpoint between best 

offers and best bids. 
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6. Calculate time-to-maturity. 

7. For each (day, maturity), keep strike prices with both

put and call options in the data. 

8. For each (day, maturity, strike), keep the option (call or

put) with the lowest price. This step keeps out-of-the-

money options in the sample while omitting in-the-

money options. 

9. Drop options with the best bid of zero. 

0. Drop options with less than 7 or more than 550 days

to maturity. 

1. Drop every (day, maturity) with less than 10 strike

prices. 

After cleaning the data, we perform the following steps

to replicate the results of Martin (2017) . 

1. For each (day, maturity), integrate the price of OTM op-

tions with respect to the strike price using the method

described in the appendix of Martin (2017) , section B.

Let I t,T denote this integral. I t,T is the numerical equiv-

alent of ∫ F t,T 

0 

put t,T (K) dK + 

∫ ∞ 

F t,T 

call t,T (K) dK. 

2. Calculate the Martin bound as 2 I t,T /S 2 t , where S t is the

closing price of the S&P500. 

3. Interpolate the bound linearly to match 30, 90, 180, and

360-day maturities. We match these with realized re-

turns over 21, 63, 126, and 252 trading days. 

To calculate the Chabi-Yo and Loudis (2020) bounds,

in addition to cleaning the data, we use the three-month

treasury bill yields from FRED (DGS3MO) to calculate the

risk-free rate at the maturity horizon of each option. Then,

we proceed to perform the following steps. 

1. At each (date, maturity), calculate the second, third, and

fourth moments as defined in equation (B.16) of Chabi-

Yo and Loudis (2020) . 

2. At each (date, maturity), calculate the probability of

a 20% crash as defined in the internet appendix of

Chabi-Yo and Loudis (2020) , Section B.2 . To calculate

the derivative of put prices, we fit a cubic spline to the

entire curve of OTM put prices and then calculate the

derivative of the cubic spline. We also use the same cu-

bic spline to find the put price at a strike of 0 . 8 S t . 

3. At each (date, maturity), calculate the restricted first

to fifth moments at k 0 = 0 . 8 as described in equa-

tion (B.27) of Chabi-Yo and Loudis (2020) . 

4. For each (date, maturity) calculate the restricted lower

bound as 

Mom 2 /R f,t,T − Mom 3 /R 

2 
f,t,T 

+ Mom 4 /R 

3 
f,t,T 

1 − Mom 2 /R 

2 
f,t,T 

+ Mom 3 /R 

3 
f,t,T 

, (C.1)

following equation (31) in Chabi-Yo and Loudis (2020) . 

5. For each date and bound, interpolate the maturities to

reach the desired 30, 90, 180, and 360-day maturities. 

C2. Stock-level bounds 

We download S&P500 constituents from CRSP and

match them to Option Metrics using the linking table pro-

vided on WRDS. For these constituents, we download the
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volatility surface and underlying security data from Op- 

tion Metrics tables vsurfdYYYY and secprdYYYY respec- 

tively, where YYYY denotes the year, ranging from 1996 to 

2020. We perform the following steps to replicate the re- 

sults of Martin and Wagner (2019) . 

1. Drop all (stock, date, maturity) triples for which some 

option on the stock with that maturity at that date has 

a missing strike or maturity. 

2. Merge volatility surface data with underlying security 

data. 

3. For each (stock, date, maturity), generate the running 

minimum of call prices and running maximum of put 

prices. 

4. For each (stock, date, maturity, strike), drop the put op- 

tion if the running maximum is less than or equal to 

the running minimum. Otherwise drop the call option. 

5. For each (date, maturity), assume the series of strikes 

remaining in the sample are K 1 < K 2 < . . . < K n . Also, 

assume that the respective prices are p 1 , p 2 , . . . , p n . We 

numerically integrate the option price with respect to 

the strike price using the method described in the in- 

ternet appendix of Kadan and Tang (2020) . More specif- 

ically, we calculate the sum 

I t,T = 

n ∑ 

i =2 

(K i − K i −1 ) min { p i , p i −1 } , (C.2) 

which estimates ∫ F t,T 

0 

put t,T (K) dK + 

∫ ∞ 

F t,T 

call t,T (K) dK. 

I t,T is always smaller than the integral above. 

6. Calculate R f,t,T SV IX i,t,T = 2 I t,T /S 2 
i,t 

, where S i,t is the clos- 

ing price of the underlying security. This is the same 

quantity in the first equation of page 16 in Martin and 

Wagner (2019) . 

7. Repeat the same procedure for index options to get 

R f,t,T SV IX 2 t,T . 

8. Merge the data with daily CRSP files and calculate the 

market cap for each (permno, date) in the data. 

9. Calculate R f,t,T SV IX 
2 

t,T by taking a value-weighted aver- 

age of R f,t,T SV IX 2 i,t,T . 

0. Calculate the bound as 

R f,t,T 

(
SV IX 

2 
t,T + 

1 

2 

( SV IX 

2 
i,t,T − SV IX 

2 

t,T ) 
)

. 

To calculate the lower bound in Kadan and Tang (2020) , 

we calculate R f,t,T × SV IX 2 i,t,T as explained above. To remain 

consistent with the Martin and Wagner (2019) bounds, we 

deviate from the process in Kadan and Tang (2020) in two 

ways. First, we use the volatility surface tables from Op- 

tion Metrics instead of individual option prices. Second, for 

each (stock, date), we calculate the bounds at each horizon 

separately as opposed to taking the average across hori- 

zons. This is possible because the volatility surface tables 

provide more maturities than are available from individual 

option prices. To calculate 

δi = 

var (R i ) 

cov (R i , R m 

) 
, 

we download daily stock files from CRSP and calculate 

variances and covariances on a rolling basis with a 252-day 
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window. In this step, we require at least 200 observations

for each observation of δ. 

References 

Amihud, Y., Hurvich, C.M., 2004. Predictive-regressions: a reduced-bias

estimation method. J. Financ. Quant. Anal. 39, 813–841. doi: 10.1017/
S0 0221090 0 0 0 03227 . 

Bakshi, G., Crosby, J., Gao, X., Zhou, W., 2019. A new formula for the

expected excess return of the market,Unpublished working paper.
10.2139/ssrn.3464298 

Boudoukh, J., Richardson, M., Smith, T., 1993. Is the ex ante risk premium
always positive?: a new approach to testing conditional asset pricing

models. J. Financ. Econ. 34 (3), 387–408. doi: 10.1016/0304-405X(93)
90033-8 . 

Campbell, J.Y., Thompson, S.B., 2008. Predicting excess stock returns out

of sample: can anything beat the historical average? Rev. Financ. Stud.
21 (4), 1509–1531. doi: 10.1093/rfs/hhm055 . 

Chabi-Yo, F., Dim, C., Vilkov, G., 2022. Generalized bounds on the condi-
tional expected excess return on individual stocks, Management Sci-

ence, forthcoming. doi: 10.2139/ssrn.3565130 
Chabi-Yo, F., Loudis, J., 2020. The conditional expected market return. J.

Financ. Econ. 137 (3), 752–786. doi: 10.1016/j.jfineco.2020.03.009 . 
Diebold, F.X., Mariano, R.S., 1995. Comparing predictive accuracy. J. Bus.

Econ. Stat. 13 (3), 253–263. doi: 10.1198/0735001027534104 4 4 . 

Gourieroux, C., Holly, A., Monfort, A., 1982. Likelihood ratio test, Wald
test, and Kuhn–Tucker test in linear models with inequality con-

straints on the regression parameters. Econometrica 50, 63–80 . https:
//www.jstor.org/stable/1912529 

Goyal, A., Welch, I., 2003. Predicting the equity premium with dividend
ratios. Manag. Sci. 49, 639–654. doi: 10.1287/mnsc.49.5.639.15149 . 

Green, J., Hand, J.R.M., Zhang, X.F., 2017. The characteristics that provide

independent information about average U.S. monthly stock returns.
Rev. Financ. Stud. 30 (12), 4389–4436. doi: 10.1093/rfs/hhx019 . 
760 
Gu, S., Kelly, B., Xiu, D., 2020. Empirical asset pricing via machine learning. 
Rev. Financ. Stud. 33 (5), 2223–2273. doi: 10.1093/rfs/hhaa009 . 

Hansen, L.P., Hodrick, R.J., 1980. Forward exchange rates as optimal pre- 
dictors of future spot rates: an econometric analysis. J. Polit. Econ. 88 

(5), 829–853. doi: 10.1086/260910 . 
Kadan, O., Tang, X., 2020. A bound on expected stock returns. Rev. Financ. 

Stud. 33 (4), 1565–1617. doi: 10.1093/rfs/hhz075 . 

Kelly, B., Pruitt, S., 2013. Market expectations in the cross-section of 
present values. J. Finance 68 (5), 1721–1756. doi: 10.1111/jofi.12060 . 

Kodde, D.A., Palm, F.C., 1986. Wald criteria for jointly testing equality 
and inequality restrictions. Econometrica Kodde 54, 1243–1248 . https: 

//www.jstor.org/stable/1912331 
Kudo, A., 1963. A multivariate analogue of the one-sided test. Biometrika 

50, 403–418. doi: 10.1093/biomet/50.3-4.403 . 
Martin, I., 2017. What is the expected return on the market? Q. J. Econ. 

132 (1), 367–433. doi: 10.1093/qje/qjw034 . 

Martin, I.W.R., Wagner, C., 2019. What is the expected return on a stock? 
J. Finance 74 (4), 1887–1929. doi: 10.1111/jofi.12778 . 

Newey, W.K., West, K.D., 1987. A simple, positive semi-definite, het- 
eroskedasticity and autocorrelation consistent covariance matrix. 

Econometrica 55, 703–708 . 
Perlman, M.D., 1969. One-sided testing problems in multivariate analysis. 

Ann. Math. Stat. 40, 549–567 . https://www.jstor.org/stable/2239474 

Rapach, D.E., Strauss, J.K., Zhou, G., 2010. Out-of-sample equity premium 

prediction: combination forecasts and links to the real economy. Rev. 

Financ. Stud. 23 (2), 821–862. doi: 10.1093/rfs/hhp063 . 
Stambaugh, R.F., 1999. Predictive regressions. J. Financ. Econ. 54, 375–421. 

doi: 10.1016/S0304-405X(99)0 0 041-0 . 
Welch, I., Goyal, A., 2008. A comprehensive look at the empirical perfor- 

mance of equity market prediction. Rev. Financ. Stud. 21, 1455–1508. 

doi: 10.1093/rfs/hhm014 . 
Wolak, F.A., 1989. Testing inequality constraints in linear economet- 

ric models. J. Econom. 41 (2), 205–235. doi: 10.1016/0304-4076(89) 
90094-8 . 

https://doi.org/10.1017/S0022109000003227
https://doi.org/10.1016/0304-405X(93)90033-8
https://doi.org/10.1093/rfs/hhm055
https://doi.org/10.2139/ssrn.3565130
https://doi.org/10.1016/j.jfineco.2020.03.009
https://doi.org/10.1198/073500102753410444
https://www.jstor.org/stable/1912529
https://doi.org/10.1287/mnsc.49.5.639.15149
https://doi.org/10.1093/rfs/hhx019
https://doi.org/10.1093/rfs/hhaa009
https://doi.org/10.1086/260910
https://doi.org/10.1093/rfs/hhz075
https://doi.org/10.1111/jofi.12060
https://www.jstor.org/stable/1912331
https://doi.org/10.1093/biomet/50.3-4.403
https://doi.org/10.1093/qje/qjw034
https://doi.org/10.1111/jofi.12778
http://refhub.elsevier.com/S0304-405X(22)00055-1/sbref0019
https://www.jstor.org/stable/2239474
https://doi.org/10.1093/rfs/hhp063
https://doi.org/10.1016/S0304-405X(99)00041-0
https://doi.org/10.1093/rfs/hhm014
https://doi.org/10.1016/0304-4076(89)90094-8

	Validity, tightness, and forecasting power of risk premium bounds
	1 Bounds
	2 Multiple inequality tests
	3 Bound and return data
	3.1 Market bounds and returns
	3.2 Stock bounds and returns

	4 Validity and tightnesss
	4.1 Validity and tightnesss of market bounds
	4.2 Validity and tightnesss of stock bounds
	4.3 What drives the validity results?

	5 Full-sample estimation
	5.1 Full-sample estimation for market bounds
	5.2 Full-sample estimation for stock bounds

	6 Out-of-sample analysis
	6.1 Out-of-sample analysis of market bounds
	6.2 How much data is needed to detect a market bound’s forecasting power?
	6.3 Out-of-sample analysis of stock bounds

	7 Conclusion
	Acknowledgments
	Appendix A Implementing the Kodde-Palm tests
	Appendix B Simulations
	B1 Calibration
	B2 Finite sample inference for validity and tightness tests
	B3 Bootstrapped predictive regressions under null of no predictability
	B4 Simulation of out-of-sample 

	Appendix C Calculating the bounds
	C1 Market-level bounds
	C2 Stock-level bounds

	References


