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In a Kyle (1985) model, the sign of the correlation between a firm’s debt and equity returns
is the same as the sign of the cross-market Kyle’s lambda. The sign is positive (negative)
if private information concerns the mean (risk) of the firm’s assets. We show empirically
that information conveyed by order flows is primarily about asset means. The cross-market
lambdas are quite large; consequently, the portions of bond and stock returns explained
by order flows are highly correlated, even though the order flows themselves are virtually
uncorrelated. (JEL G12, G14)

Because they are derivatives with monotone payoffs written on a firm’s assets,
the prices of corporate debt and equity claims should respond in the same
direction to information about the mean value of a firm’s assets, but, because
the bond payoff is concave and the stock payoff convex, they should respond in
opposite directions to information about the risk of a firm’s assets. The nature
of information—whether it is predominantly about means or risks—is difficult
to ascertain in general, but we show that it is possible to determine the nature
of private information that arrives to the market via order flows.

In a Kyle (1985) model of informed trading in a firm’s debt and equity,
different types of private information have different implications for the sign
of the cross-market Kyle’s lambdas: the cross-market lambdas are positive
if information is primarily about the asset mean and negative if information
is primarily about the asset risk. We show empirically that the cross-market
lambdas are positive, implying that private information is primarily about
means. In fact, the cross-market lambdas are quite large. Consequently, the
parts of the bond and stock returns that are explained by order flows are
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highly correlated (the median correlation is 80%), even though the order
flows themselves are virtually uncorrelated. This is in marked contrast to the
correlation between total bond and stock returns. Indeed, the low correlation
between total bond and stock returns is widely regarded as a puzzle—see, for
example, Collin-Dufresne, Goldstein, and Martin (2001) and Kapadia and Pu
(2012).

It is quite intuitive that the sign of the cross-market lambdas should depend
on the nature of information. If information is about the asset risk, then stock
investors have good news when bond investors have bad news, and vice
versa. So, when informed bond investors sell, it is good news for stocks;
consequently, cross-market lambdas are negative. On the other hand, by a
symmetric argument, when information is about the asset mean, cross-market
lambdas are positive. While this seems like a very general argument, it is not
trivial to establish within a theoretical Kyle (1985) model. The difficulty is
that, because corporate debt and equity are derivatives of a firm’s assets, it
is not reasonable to assume that their values are joint normally distributed.
Indeed, it is the convexity/concavity of payoffs that cause bonds and stocks to
respond in opposite directions to information about risks. To incorporate these
features of security payoffs, we solve a continuous-time Kyle model with a
single informed trader. As shown by Back (1992), such models are tractable
even when asset values have non-normal distributions (our innovation is to
solve such a model with a discrete rather than continuously distributed asset
value).

We document that both cross-market lambdas and own-market lambdas are
larger for firms with high-yield debt than for firms with investment-grade debt.
In our theoretical model, all lambdas are larger for firms with higher credit
spreads when information is primarily about the asset mean but not when
information is primarily about the asset risk, so this cross-sectional variation in
lambdas reinforces the conclusion that information is primarily about means.

The magnitudes of the cross-market lambdas, relative to own-market
lambdas, are nearly identical for high-yield firms and investment-grade firms,
but they fell significantly for financial firms during the recent financial crisis.
To measure the sign and size of the cross-market lambdas compared with own-
market lambdas, we note that, if the order flows were uncorrelated, then the
correlation between the parts of the bond and stock returns explained by order
flows would be due entirely to the cross-market lambdas. So, we compute
the correlation between the explained parts of the stock and bond returns
that would be implied by the lambdas if the order flows were uncorrelated
and homoscedastic. This equals the cosine of the angle between the rows of
the lambda matrix, a metric we call the scaled inner product. This measure
of the cross-market lambdas fell dramatically for financial firms during the
financial crisis. While there are other possible explanations, this is consistent
with there being increased private information about risks for financial firms
during the crisis.
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To determine whether information about risks is empirically significant, one
might be tempted to regress bond returns or spreads on stock return volatility.1

Our theoretical model shows that it is hazardous to draw inferences from such
a regression regarding the importance of information about risks. Specifically,
an increase in the perception of future risks can coincide with a reduction in
stock return volatility. In our theoretical model, we assume the informed trader
has binary information about the mean and/or risk of the future asset value.
The market learns through the order flow about which of the two possible
information states has been realized.As in Veronesi (1999), standard deviations
of price changes are highest when the market is most uncertain about the
information state—when both states are considered equally probable. If one of
the states is high risk and the other is low risk, then the maximum stock return
volatility (standard deviation of log price change) occurs when the probability
of the high-risk state is less than 1/2. For higher probabilities of the high-risk
state, information that tends to confirm the high-risk state will lower return
volatility. Thus, estimating cross-market lambdas is a more reliable method of
determining whether information is about risks or means, though of course this
applies only to private information that is manifested in order flows.

Our results hinge on the presence of informed trading in corporate bonds. Evi-
dence that there is a significant amount of informed trading in corporate bonds
is provided by Wei and Zhou (2012), Kedia and Zhou (2014), and Han and Zhou
(2014). Wei and Zhou (2012) examine corporate bond trading and returns prior
to earnings announcements. They find that pre-announcement bond trade imbal-
ance is predictive of earnings surprises and post-announcement bond returns.
Kedia and Zhou (2014) obtain similar results for trading and returns of target
company bonds prior to acquisition announcements. Han and Zhou (2014) show
that measures of adverse selection are significantly related to credit spreads.

Anecdotal evidence of informed trading in corporate bonds includes
McCracken (2008), who reports allegations that one or more informed investors
shorted Delphi bonds. A particularly interesting case is described by Szockyj
(1993). In that case, a number of executives and relatives of the founder of
Carl Karcher Enterprises (CKE) were alleged to have traded illegally in both
the debt and equity of CKE prior to a negative earnings announcement. Such
joint informed trading in debt and equity is particularly likely by investors who
hold both securities. Bodnaruk and Rossi (2013) document that institutional
investors often simultaneously hold the debt and equity of a firm; these “dual
holders” own on average about 10% of the overall shares outstanding for the
firms. Acharya and Johnson (2010) also posit that informed trading may occur
simultaneously in the debt and equity of a company. They create measures of
the ex post likelihood of informed trading in bonds, credit default swaps, stock,

1 Such regressions are run by Collin-Dufresne, Goldstein, and Martin (2001), Campbell and Taksler (2003), and
Cremers et al. (2008), using the VIX, idiosyncratic volatility, and implied volatilities, respectively, as the volatility
measure.
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and stock options prior to acquisitions by private equity funds and show that
they are positively related to the number of potential insiders.

Bond transactions costs are higher for smaller transactions (Schultz, 2001).
Our goal is not to explain bid-ask spreads for stocks and bonds but instead to
measure the permanent price impacts of bond and stock trades on bond and stock
prices. To minimize bid-ask bounce in bond returns, we consider only firms
with actively traded bonds, exclude small transactions, and measure returns
over hourly or daily time intervals. Han and Zhou (2014) provide evidence that
information asymmetry is higher in larger bond transactions, consistent with
information-based market microstructure models.

The question of why information is predominantly about asset means is
beyond the scope of this paper. It is possible that information about asset risks
is inherently more difficult to obtain than information concerning expected
values, so markets perceive trading activity as conveying the latter. It is also
possible there is some market segmentation and information about risks is
exploited in the stock option market rather than in stock and bond markets. We
discuss a possible extension of our model to options markets in the conclusion.

1.1 Literature review
While there is a large literature on asymmetric information and capital structure
choice, relatively few papers look at informed trading across bond and stock
markets. Boot and Thakor (1993) and Fulghieri and Lukin (2001) study
competitive rational expectations equilibria, focusing on the effect of security
design on the incentives for investors to acquire information. Chang and Yu
(2010) analyze a competitive rational expectations model and examine the
extent to which managers can learn from informed traders via market prices.
Lesmond, O’Connor, and Senbet (2008) analyze a Kyle model but assume
riskless debt, so there is informed trading only in the equity market.

Several papers study multi-security Kyle models with the assumption of
joint normal asset values, including Caballé and Krishnan (1994), Boulatov,
Hendershott, and Livdan (2013), and Pasquariello and Vega (forthcoming).
Caballé and Krishnan solve a single-period Kyle model with joint normally
distributed asset values. Their main result is that the matrix of Kyle’s lambdas
is positive definite.2 Pasquariello and Vega study a two-period version of the
Caballé-Krishnan model and show empirically that cross-market lambdas are
typically significantly different from zero (frequently negative, but significant).
Boulatov, Hendershott, and Livdan modify the two-period model by assuming
that market makers can see order flows (and prices) only in their own
market. This introduces cross-serial correlation of returns and therefore serial
correlation of portfolio returns. They document empirically that institutional
order flows lead market returns. Unlike these papers, we relax the assumption

2 We provide empirical evidence that this is true, and as far as we know, we are the first to show this in any markets.
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of joint normality, so that we can analyze informed trading in a firm’s debt
and equity.

Most bond transactions occur in the over-the-counter market, in which
customers contact dealers sequentially. Models of over-the-counter markets
based on search theory have been studied by Duffie, Garleanu, and Pedersen
(2005), Zhu (2012), and He and Milbradt (2014), among others. Search frictions
add costs on top of the purely informational price impacts in Kyle models. We
have nothing to say about those additional costs; however, the informational
price impacts that we do study seem to be important. For example, we show both
theoretically and empirically that stock orders affect bond prices, which would
not necessarily be a feature of a pure search model. Thus, the two approaches
seem to complement one another.

To our knowledge, this is the first empirical work on net order flows across
the corporate stock and bond markets. Previous cross-market studies in this
spirit have focused on multiple stocks (Chan, Menkveld, and Yang 2007;
Tookes 2008; Andrade, Chang, and Seasholes 2008; Boulatov, Hendershott,
and Livdan 2013; Pasquariello and Vega forthcoming), the stock and option
markets (Chan, Chung, and Fong 2002; Rourke 2014), or stock and government
bond markets (Chordia, Sarkar, and Subrahmanyam 2005). Of course, there
are many studies of price impacts of order flows in stock and bond markets
separately, including Breen, Hodrick, and Korajczyk (2002), Hasbrouck (2009),
and Goyenko, Holden, and Trzcinka (2009) in equity markets and Edwards,
Harris, and Piwowar (2007) and Bessembinder, Maxwell, and Venkataraman
(2006) in corporate bond markets.

Previous studies of the relationship between debt and equity markets have
primarily focused on the degree of comovement and the relative timing of
returns in the two markets rather than trading activity. Concerning the extent of
comovement, Alexander, Edwards, and Ferri (2000) study cross-market return
comovement around events likely to transfer wealth between debt- and equity-
holders. They find that debt/equity returns are weakly positively correlated in
general but often move in opposite directions around such events. Extending
the results of Collin-Dufresne, Goldstein, and Martin (2001), Kapadia and Pu
(2012) argue that bonds and stocks move in opposite directions too frequently
in the short run and propose limits to arbitrage as an explanation.

The literature contains mixed results regarding the relative informational
efficiency of bond and stock markets and whether stock returns lead bond
returns. Studies concluding that stock markets lead bond markets include Kwan
(1996), Alexander, Edwards, and Ferri (2000), and Downing, Underwood,
and Xing (2009). On the other hand, Hotchkiss and Ronen (2002), Ronen
and Zhou (2013), and Kedia and Zhou (2014) find that bond markets are
as informationally efficient as related equities. In contemporaneous work,
Mao (2013) studies the relative contribution of the bond market to price
discovery using the information share approach of Hasbrouck (1995) and finds
bond markets contribute 13% to price discovery. The relative informational
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efficiency of equity and credit default swap (CDS) markets has also been
studied. Acharya and Johnson (2007) find that there is incremental information
in CDS prices relative to equities, but this is disputed by Hilscher, Pollet, and
Wilson (forthcoming), who find that the stock market leads the CDS market.

We show that the portions of returns explained by order flows exhibit similar
levels of cross-serial correlations. The unexplained portion of stock returns
leads the unexplained component of bond returns with a median cross-serial
correlation of 10%, but the opposite cross-serial correlation is not generally
different from zero. Thus, we conclude that the equity market leads the bond
market for the unexplained portions of returns but not for the parts explained by
order flows. Unlike previous work, we study cross-market price impacts due to
trading activity to discern the nature of private information (means versus risks),
which is a possible explanation for the documented low correlation between
returns in the stock and bond market.

2. Theory

2.1 Model
The theoretical model is a continuous-time Kyle (1985) model. There is a
constant risk-free rate r . A bond and stock of a firm are traded continuously
on a time interval [0,T ]. An announcement affecting the bond and stock
values is made after the close of trading at date T . The bond is a zero-coupon
bond and matures at T or after. A single risk-neutral trader receives a signal
about the announcement at date 0. The signal is binary. We do not assume
the informed trader knows the post-announcement values with certainty. His
signal can leave residual uncertainty. What is important in the Kyle model are
the informed trader’s expectations of the post-announcement bond and stock
values, conditional on his signal values. We denote the conditional expectations
in the two information states by (B1,S1) and (B2,S2), respectively.

As an illustration, assume the bond matures at the announcement date T , and
the announcement is the firm’s asset value ṽ at date T . Assume ṽ is drawn from
a mixture of lognormals: logṽ = μ̃− σ̃ 2/2+ σ̃ ξ̃ , where ξ̃ is a standard normal
and the mean-risk pair (μ̃,σ̃ ) is either (μ1,σ1) or (μ2,σ2). In this example,
the informed trader’s signal is (μ̃,σ̃ ). Denote the face value of the debt by D,
and normalize so that there is a single share of the bond and a single share of
stock outstanding. Abstracting from taxes and deadweight bankruptcy costs,
the expected post-announcement bond and stock values conditional on the
informed trader’s signal are

Bi =
∫ ∞

−∞
min

(
eμi−σ 2

i
/2+σix,D

)
n(x)dx, (1a)

Si =
∫ ∞

−∞

(
eμi−σ 2

i
/2+σix−D

)+
n(x)dx, (1b)

where n denotes the standard normal density function.

1386

 at :: on Septem
ber 29, 2015

http://rfs.oxfordjournals.org/
D

ow
nloaded from

 



The Informational Role of Stock and Bond Volume

In addition to the informed trades, there are also liquidity trades in the
bond and stock, modeled as correlated Brownian motions. Risk-neutral market
makers observe net orders in both the bond and the stock and compete to fill
them, pushing the market prices to discounted expected values, conditional on
the information in the order flows.3 As in all Kyle models, the informed trader
understands how prices depend on the order history and takes it into account
when optimizing. Also, again as in all Kyle models, the announcement resolves
the information asymmetry, and positions can be liquidated frictionlessly at the
post-announcement values.

Let Zb and Zs denote the Brownian motions representing the cumulative
liquidity trades in the bond and stock respectively. Let

� =

(
σ 2

b ρσbσs

ρσbσs σ 2
s

)

denote the instantaneous covariance matrix of Z =(Zb,Zs). Let Xb and Xs

denote the cumulative trades of the informed trader, and set Y i =Xi +Zi , for
i∈{b,s}. Market makers observe the vector stochastic process Y =(Y b,Y s). Let
P i denote the market price of asset i for i∈{b,s}. We will derive an equilibrium
in which P i

t =pi(t,Yt ) for some functions pi . This means that the prices depend
only on cumulative orders at each date and not on the complete prior history of
orders. We use the symbols P i

T to denote the prices at the close of trading, prior
to the announcement. There can be jumps at the announcement if the informed
trader’s signal leaves residual uncertainty about the post-announcement values.

2.2 Information about the asset mean versus the asset risk
Set �B=B2−B1 and �S=S2−S1. The sign of �B�S depends on whether
private information is primarily about the asset mean or primarily about the
asset risk. To see this, consider the lognormal example discussed earlier. The
Black-Scholes call option formula implies that the bond and stock expected
values Bi and Si defined by Equation (1) are given by Bi =fB(μi,σi) and
Si =fS(μi,σi), where

fB(μ,σ )=DN

(
μ−logD−σ 2/2

σ

)
+eμN

(
−μ−logD+σ 2/2

σ

)
,

fS(μ,σ )=eμN

(
μ−logD+σ 2/2

σ

)
−DN

(
μ−logD−σ 2/2

σ

)

3 Our assumption that market makers observe order flow in both markets is not extreme. In the model, market
makers can infer orders from price changes, so the assumption that we actually need is post-trade transparency.
See Section 3.3 for a discussion of transparency in these markets.
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with N denoting the standard normal distribution function. The Black-Scholes
formulas for the delta and vega of a call option imply

∂fB(μ,σ )

∂μ
=eμN

(
−μ−logD+σ 2/2

σ

)
,

∂fS(μ,σ )

∂μ
=eμN

(
μ−logD+σ 2/2

σ

)
,

∂fB(μ,σ )

∂σ
=−eμn

(
μ−logD+σ 2/2

σ

)
,

∂fS(μ,σ )

∂σ
=eμn

(
μ−logD+σ 2/2

σ

)
.

Thus, the bond and stock values are each increasing in the asset mean eμ.
However, the bond value is decreasing and the stock value increasing in the
asset risk σ . If, for example, σ1 =σ2, so the private information is purely about
the asset mean eμ, then both Bi and Si are higher in the high-mean state,
implying �B�S >0. On the other hand, if μ1 =μ2, so information is purely
about the asset risk, then Bi is higher in the low-risk state and Si is higher in
the high-risk state, so �B�S <0.

For a general binary signal, if information is primarily about the asset mean,
then B and S move together and are higher in the state with the higher mean.
However, if information is primarily about the asset risk, then B is higher in
the low-risk state, and S is higher in the high-risk state, due to the concavity of
the former and convexity of the latter. Therefore, the sign of �B�S is positive
if information is primarily about the asset mean and negative if information
is primarily about the asset risk. As an example, suppose the mean and risk
move in opposite directions and state 2 is the low-mean/high-risk state. Then,
the bond price will be lower in state 2 than in state 1, so �B <0. The value
of �S is ambiguous. If the risk information is more important than the mean
information for the stock price, then �S >0. In this case, we say that information
is primarily about the asset risk, because �B�S <0. On the other hand, if the
mean information is more important for the stock price, then �S <0, and we
say that information is primarily about the asset mean.

A more general definition of information being about the asset mean versus
the asset risk that is consistent with ours is the following. Consider a general
distribution of the asset value and a general signal distribution for the informed
trader, and let B̃ and S̃ denote the expected bond and stock values conditional on
the informed trader’s signal. Then, we could say that information is primarily
about the asset mean if cov(B̃,S̃)>0 and primarily about the asset risk if
cov(B̃,S̃)<0. We discuss the sign of the cross-market lambda in a model with
a general distribution of the asset value and a general signal distribution in
Section 2.10.

2.3 Definition of equilibrium
One requirement for equilibrium is that the bond and stock prices equal
discounted expected values, conditional on the market makers’ information
and given the trading strategy of the informed trader. Let πt denote the
conditional probability of the second information state given the market makers’
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information at date t , that is, conditional on the history of Y through date t .
Prices equal discounted expected values if

P b
t =e−r(T−t)(B1 +�Bπt ), (2a)

P s
t =e−r(T−t)(S1 +�Sπt ). (2b)

The other requirement for equilibrium is that the informed trades are optimal.
Let θb

t and θs
t denote the rate at which the informed trader trades the bond and

stock, respectively.4 These rates have to be adapted to the information possessed
by the informed trader, which is the binary signal and the history of Z (in the
Appendix, we show that the equilibrium prices reveal enough about the history
of Z to enable the informed trader to implement the equilibrium trading strategy,
so it is not necessary that he observe Z directly). The informed trader chooses
the rates to maximize his conditional expected profit

E
∫ T

0

(
Bi−er(T−t)P b

t

)
θb
t dt +E

∫ T

0

(
Si−er(T−t)P s

t

)
θs
t dt , (3)

in each information state i∈{1,2}. Here, the expectations are over the path
of the liquidity trades Z. Of course, the rates of trade θ can and will differ
across the two information states. Also, the informed trader takes it as given
that the prices in Formula (3) are determined as P k

t =pk(t,Yt ) for k∈{b,s}, with
the functions pk being regarded by the informed trader as exogenous. In the
optimization, we also assume that the informed trader is constrained to satisfy
the “no doubling strategies” condition introduced in Back (1992), meaning that
the strategy must be such that

E
∫ T

0

[
pk(t,Yt )

]2
dt <∞

for k∈{b,s} and in each information state.

2.4 Equilibrium
Let � denote the column vector (�B,�S)′, and define

φ =
√

�′��. (4)

To exclude trivial cases, assume φ �=0. The parameter φ is the instantaneous
standard deviation of the stochastic process �′Yt , which plays an important
role in the equilibrium—see Equation (6) below. For any real number a, define

κ(t,a)=
e−r(T−t)

φ
√

T −t
×n

(
a

φ
√

T −t

)
, (5)

where, as before, n denotes the standard normal density function. Let N denote
the standard normal distribution function. The proof of the following is in
Appendix A.

4 It is without loss of generality to assume that the informed trades are of order dt (dX=θ dt for some θ), because
Back (1992) shows that jumps and Brownian motion components are suboptimal.
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Proposition 1. Let π0 denote the unconditional probability of the second
state. Set α =φ

√
T N−1(π0). There is an equilibrium in which the prices satisfy

Equation (2) with

πt =N

(
α+�′Yt

φ
√

T −t

)
. (6)

The equilibrium trading strategy is θt =qi(t,Yt ) in information state i, where

q1(t,y)=
1

T −t
E[ZT −y |Zt =y,�′ZT <−α], (7a)

q2(t,y)=
1

T −t
E[ZT −y |Zt =y,�′ZT >−α]. (7b)

The bond and stock prices evolve as dPt = rPt dt +t dYt , where t is the
singular matrix κ(t,α+�′Yt )��′. In this equilibrium, the aggregate order
process Y is a Brownian motion with zero drift and instantaneous covariance
matrix � given the market makers’information. Moreover, there is convergence
to strong-form efficiency in the sense that limt→T P b

t =Bi and limt→T P s
t =Si

with probability one in each information state i.

Note that the cross-market lambda is κ(t,α+�′Yt )�B�S , which is a positive
multiple of �B�S . Thus, the cross-market lambda is positive when information
is primarily about the asset mean and negative when information is primarily
about the asset risk. This is discussed further at the end of this section. The
remainder of the section addresses the interpretation and implications of the
proposition.

2.5 The distribution of order flows and learning by the market
In the proof of the proposition, we show that the trading strategy defined by
Equation (7) has the property that the informed trades cannot be predicted by
market makers; that is, Et [θt ]=0 for all t when the expectation is conditional
on market makers’ information. This is a standard feature of Kyle models. It
implies that the aggregate order process Y is a martingale given market makers’
information.

As the proposition states, the instantaneous covariance matrix of Y is �,
which is also the instantaneous covariance matrix of Z. This follows from the
fact that the instantaneous covariance matrix depends only on the Brownian
motion components, and the Brownian motion component of Y is Z. Combining
this with the martingale property of Y implies that the distribution of changes
in Y over discrete time periods is also the same as the distribution of changes
in Z over discrete time periods, because the covariance of two martingales (for
example, Y i and Y j for i,j ∈{b,s}) is the sum (or integral) of the covariances of
the martingale increments, by iterated expectations. In particular, the covariance
matrix of the vector YT is

∫ T

0 (dYt )(dYt )′=T �. Thus, the distribution of
aggregate order flows is determined by the distribution of liquidity trades and
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does not depend on whether information is about the asset mean or the asset risk.
In fact, it is a general property of Kyle models that the nature of information
cannot be identified from order flow data alone. The reason is that the informed
trader adapts his trades to the liquidity trades. If he has good news about an
asset, he will buy it (for most parameter values—see the discussion in the next
section). But, he will buy very little if liquidity traders happen to buy a lot. See
Back, Crotty, and Li (2014) and the last paragraph of the next section for more
on this topic.

The statement in the proposition that Y is a Brownian motion given the
market makers’ information follows from it being a martingale and from its
instantaneous covariance matrix being a constant matrix. This result is called
Levy’s theorem.

We also show in the proof of the proposition that the trading strategy (7)
implies that �′YT <−α with probability one in information state 1 and �′YT >

−α with probability one in information state 2. In equilibrium, market makers
are aware that �′YT <−α in state 1 and �′YT >−α in state 2. They use this
fact, the fact that Y is a Brownian motion, and the current value of �′Yt at each
time t to calculate the conditional probabilities of the two states. This produces
Equation (6). It also implies that the market learns the information state over
time: the conditional probability of state 2 in Equation (6) satisfies πt→0
with probability one in state 1 and πt→1 with probability one in state 2. This
produces the convergence to strong-form efficiency stated in the proposition.

2.6 Informed trading
A more explicit formula can be obtained for the equilibrium trading strategy
defined by Equation (7) by computing the conditional expectations. For each
i∈{b,s} and each t <T , we have the projection formula

Zi
T −Zi

t =βi(�′ZT −�′Zt )+εi ,

where

βi =
cov(Zi

T −Zi
t ,�

′ZT −�′Zt )

var(�′ZT −�′Zt )
=

(T −t)cov(Zi
T ,�′ZT )

(T −t)var(�′ZT )
=

cov(Zi
T ,�′ZT )

var(�′ZT )
,

(8)
and where εi has zero mean and (due to normality) is independent of �′ZT −
�′Zt . We have

E[εi |Zi
t ,�

′ZT >−α]=E[εi]=0,

because Z has independent increments and because εi is independent of �′ZT −
�′Zt . Therefore,

E[Zi
T −Zi

t |Zt,�
′ZT >−α]=βiE[�′ZT −�′Zt |Zt,�

′ZT >−α],

and similarly for the case �′ZT <−α. Applying a standard formula for the
mean of a normal random variable conditional on it being above or below
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a theshold yields the following formulas in the two information states for the
informed trading strategy defined by Equation (7) :

q1(t,y)=−
√

T −t

2π
· φe−f (t,y)2/2

N(−f (t,y))
·β, (9a)

q2(t,y)=

√
T −t

2π
· φe−f (t,y)2/2

N(f (t,y))
·β, (9b)

where f (t,y)= (α+�′y)/
√

(T −t)φ2 and β =(βb βs)′.
For typical parameter values, the informed trader trades the assets in the same

direction (either buying both or selling both) when information is primarily
about the asset mean and trades them in opposite directions (buying one and
selling the other) when information is primarily about the asset risk. To see
this, note that Equation (9) implies that the signs of the trades are the signs
of the β’s in information state 2 and the opposite in information state 1. Also,
Equation (8) implies that βb has the sign of σb�B +ρσs�S and βs has the sign
of σs�S +ρσb�B . If the correlation ρ between the liquidity trades is not too
large in absolute value, then βb has the same sign as �B , and βs has the same
sign as �S . In this case, the informed trader always buys undervalued securities
and sells overvalued securities. When information is primarily about the asset
mean, he buys both securities in the high-mean state and sells both in the low-
mean state. On the other hand, when information is primarily about the asset
risk, then he buys one security and sells the other.

However, there are parameter values for which the informed trader will buy
an overvalued security or sell an undervalued security. Suppose, for example,
that information is primarily about the asset mean and state 2 is the high-
mean state, so �B >0 and �S >0. Suppose that the correlation ρ between
the liquidity trades is negative and sufficiently large in absolute value that
σb�B +ρσs�S <0. Observe that this implies that σb�B <σs�S , so we must
have σs�S +ρσb�B >0. Therefore, the informed trader buys the stock and sells
the bond in state 2, even though both securities are undervalued. Likewise, he
sells the stock and buys the bond in state 1, even though both securities are
overvalued. Note that by trading the securities in opposite directions in this
example, the informed trader causes the correlation of aggregate order flows
to be negative, consistent with the negative correlation of liquidity trades. This
helps to explain why the aggregate orders have the same distribution as the
liquidity trades, as discussed in the previous section. Nevertheless, the informed
trades in this example have the effect of eventually increasing both prices in
state 2 and decreasing both prices in state 1, with the market eventually learning
which state has occurred. This dependence of informed trades on the correlation
of liquidity trades is not unique to our model. It also occurs in the single-period
model of Caballé and Krishnan (1994).
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2.7 Credit spreads and lambdas
The lambda matrix in the proposition depends only on time and on the
conditional probability πt . Moreover, the labeling of the states is irrelevant:
the matrix is the same when the probability of the second information state is x

as it is when the probability of the first information state is x, for any 0<x <1.
This follows from the definition (5) of κ(t,a), Equation (6) for πt , and the
formula t =κ(t,α+�′Yt )��′. Specifically,

t =
e−r(T−t)

φ
√

T −t
×n

(
α+�′Yt

φ
√

T −t

)
��′

=
e−r(T−t)

φ
√

T −t
×n

(
N−1(πt )

)
��′

=
e−r(T−t)

φ
√

T −t
×n

(
N−1(1−πt )

)
��′ ,

the last equality following from the symmetry of the normal distribution.
In our empirical work, we estimate the impact of order flows on returns

instead of price changes, due to the usual stationarity concern. We estimate the
matrix �, where �ij =ij/P i for i,j ∈{b,s}. The symmetry of  with respect
to the probabilities implies an asymmetry of �. Suppose that information is
primarily about the asset mean, and assume state 2 is the high-mean state, so
B1 <B2 and S1 <S2. Then, the elements of the  matrix are the same when
the conditional probability of the first state is 80% as when the conditional
probability of the second state is 80%, and the prices are lower in the first
case; therefore, the elements of the � matrix are larger when the conditional
probability of the first state is 80% than when the conditional probability of
the second state is 80%. Thus, they are larger when the bond price is lower—
equivalently, when the credit spread is higher.

The above result is a comparative statics result, comparing �t for two
different values of πt . It has cross-sectional implications. Consider two firms
with the same values of �B >0 and �S >0 and the same face value of debt.
At any date t , the firm with the higher value of πt will have both the lower
credit spread and the smaller � matrix. Thus, if information is primarily about
the asset mean (�B�S >0), then our model predicts that the coefficients in
regressions of returns on order flows will be larger for firms with lower credit
ratings. On the other hand, if information is primarily about the asset risk, then
the low-bond-value state is the high-stock-value state, so the elements of the
� matrix corresponding to the stock return should be smaller for lower rated
firms. In our empirical work, we find that all of the elements of � are larger
for lower rated firms, consistent with private information being primarily about
asset means.
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2.8 Return volatilities
Set At =α+�′Yt and

dWt =
1

φ
dAt .

Combining Equations (2) and (6), we see that all investors can infer the value
of A from the equilibrium prices. Hence, W is observable to the market at
large. The proposition shows that Y and hence W is a continuous martingale
given the market’s information. Because (dW )2 =dt , it follows that W is a
standard Brownian motion given the market’s information. The formulas dPt =
rPt dt +t dYt and t =κ(t,α+�′Yt )��′ imply that

dP b
t = rP b

t dt +φ�Bκ(t,At )dWt , (10a)

dP s
t = rP s

t dt +φ�Sκ(t,At )dWt . (10b)

The function κ(t,·) is proportional to the standard normal density function.
Therefore, the standard deviations of the absolute price changes are strictly
decreasing in |At |. Combining this fact with Equation (6), we see that the
standard deviations decrease as the probability πt of the second state decreases
toward zero or increases toward one and are highest when πt =1/2. Thus,
the standard deviations are increasing in the degree of uncertainty about the
information state rather than being increasing in the probability of the high-
risk state, as one might have conjectured. This phenomenon also appears in
Veronesi (1999).

The return volatilities (standard deviations of log price changes) are

φ|�B |κ(t,At )

P b
t

,
φ|�S |κ(t,At )

P s
t

,

respectively. Suppose information is about the asset risk and state 1 is the high-
risk state, so B1 <B2 and S1 >S2. Then, the maximum bond return volatility
will occur for πt <1/2 and the maximum stock return volatility will occur
for πt >1/2. Thus, paradoxically, the maximum stock return volatility occurs
when the low-risk state is more probable. This highlights the danger in using
changes in stock return volatility to proxy for information about the asset risk.

2.9 Return correlation and cross-market lambda
Our binary information model is too simple to be a good model of the stock-bond
correlation. However, it suffices to illustrate our main point: both the correlation
and the cross-market lambda are (i) positive if information is primarily about the
asset mean, (ii) negative if information is primarily about the asset risk, and (iii)
zero or near zero if information is mixed. In fact, it is clear from Equation (10)
that the bond-stock correlation is +1 if �B�S >0, −1 if �B�S <0, or 0 if
�B�S =0. The first two cases correspond to information that is primarily about
the asset mean or primarily about the asset risk, respectively, as we have already
discussed. As an example of the third case, suppose state 1 is low mean and
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high risk and state 2 is high mean and low risk. Then, B2 >B1, because both
the high mean and the low risk are good for the bond value. However, if the
parameters are fixed precisely right, then we can obtain S1 =S2. In this case,
the stock is locally risk-free, hence uncorrelated with the bond. Also, if state 1
is low mean and low risk and state 2 is high mean and high risk, then S2 >S1,
but we could have B1 =B2, in which case the bond is locally risk-free.

In more general models, the matrix t should be nonsingular; hence, the
bond and stock returns should be less than perfectly correlated. In a previous
version of this paper, we assumed continuous information (with the informed
trader knowing the asset value ṽ exactly) and proved that t is in fact positive
definite for each t . This is consistent with the results of Back (1993) and Caballé
and Krishnan (1994).

2.10 Cross-market lambdas and the nature of information for general
signals

Consider a Kyle model in which the asset value has an arbitrary distribution and
there is a single informed trader who has an arbitrarily distributed signal about
the values of a stock and bond. Let (B̃,S̃) denote the expectations of the bond
and stock values given the informed trader’s information.Assume for simplicity
that the risk-free rate is zero and the liquidity trades are uncorrelated across
markets, so � is a diagonal matrix. Assume the following three conditions,
which seem to be robust properties of Kyle models:

(i) The price processes P b and P s are martingales—this follows from risk-
neutral market makers.

(ii) The terminal prices P b
T and P s

T satisfy P b
T = B̃ and P s

T = S̃ with probability
one—this follows from the informed trader not “leaving money on the
table”; see Back (1992).

(iii) The price changes satisfy dP =dY for a symmetric matrix —
symmetry of the lambda matrix holds in our model and is also established
in multi-asset Kyle models by Back (1993) and Caballé and Krishnan
(1994).

From standard properties of martingales, the covariance between P b
T and P s

T

equals the expected cumulative covariation:

cov(P b
T ,P s

T )=E
∫ T

0
(dP b

t )(dP s
t )=E

∫ T

0
ψt dt ,

where ψt is the off-diagonal element of t�t . Therefore,

cov(B̃,S̃)=E
∫ T

0
λbs

t (σ 2
s λss

t +σ 2
b λbb

t )dt .

The right-hand side of this is a weighted average of the cross-market lambda,
weighted by the positive process σ 2

s λss +σ 2
b λbb. Thus, the cross-market lambda
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is on average positive when cov(B̃,S̃)>0—which is true when information is
primarily about the asset mean—and is on average negative when cov(B̃,S̃)<
0—which is true when information is primarily about the asset risk. If
information is mixed, we could have cov(B̃,S̃)=0, in which case the average
cross-market lambda is zero. Thus, our result about the nature of information
and the sign of the cross-market lambda does not depend on our binary signal
assumption, provided only that conditions (i)–(iii) hold.

3. Data

3.1 Sample construction
In order to understand the information content of stock and bond order flow,
we seek to empirically characterize the price impact matrix. The empirical
analysis utilizes nine years of transactions data from the stock and corporate
bond markets. Our sample period begins in July 2002, which corresponds to
the initiation of bond transaction reporting requirements for broker-dealers by
the National Association of Securities Dealers (NASD), and runs through June
2011.As of July 2007, the reporting requirements were imposed by the Financial
Industry Regulatory Authority (FINRA). Stock market trade and quote data are
obtained from NYSE TAQ, and the corporate bond transactions data are from
FINRA TRACE.5 Bond characteristics are obtained from the Mergent Fixed
Income Security Database (FISD). Daily equity returns and shares outstanding
are obtained from CRSP. The data appendix provides the details on data
matching and filters. We restrict the universe of firms to those for which there
is an active market for both equity and debt instruments. Specifically, to be
included in the sample, we require that a firm has an observed bond return on
at least 1,000 of the 2,221 possible trading days. The resulting sample contains
observations on 221 firms.

Summary statistics concerning trading activity in our sample are given in
Table 1. The median stock market capitalization is $14 billion, so the sample
is skewed toward large firms. This is not surprising given the requirement that
firms have actively traded public debt securities. The median par amount of
debt outstanding is about $5 billion. Despite the fact that we consider relatively
liquid bonds, firms in our sample still have fewer days with a bond trade than a
stock trade. Moreover, on days with trades, the number of bond trades is dwarfed
by the number of equity trades. The median daily number of bond trades is 19,
while the median daily number of stock trades is over 12,000. However, bond
trades are for substantially larger dollar amounts, so dollar volume across the
two markets is much more similar than is the number of trades. The median firm

5 A previous version of this paper used data from 2008 through 2011. FINRA publicly disclosed trade direction
indicators starting in November 2008. In this version, we employ the Enhanced TRACE database, which includes
trade direction indicators back to 2002. The Enhanced TRACE also does not top-censor volume for investment-
grade (high-yield) trades of $5 million ($1 million).
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Table 1
Debt and equity trading activity statistics

Bond trading activity

Volume Principal # Daily trades # Trade days Turnover
($ thousands) ($ millions) (0.001s)

Mean 39,897 17,376 48 1,989 5.0
SD 81,027 45,129 116 307 3.7
P25 12,227 2,434 10 1,851 2.6
P50 19,833 5,309 19 2,151 4.0
P75 34,710 9,633 43 2,209 6.4
N 221 221 221 221 221

Stock trading activity

Volume Market cap # Daily trades # Trade days Turnover
($ thousands) ($ millions) (0.001s)

Mean 185,539 28,784 18,509 2,117 10.3
SD 224,389 41,735 19,618 254 7.6
P25 57,245 5,596 7,420 2,201 5.6
P50 107,148 14,071 12,623 2,220 8.1
P75 226,131 31,851 21,677 2,221 12.2
N 221 221 221 221 221

The sample runs from July 2002 to June 2011 (2,221 trading days) and contains data from 221 firms. Bond
market data is aggregated at the firm level, so the unit of observation is a firm-day. Stock and bond volume are
in thousands of dollars. Debt outstanding and market capitalization are in millions of dollars. Bond and stock
turnover is multiplied by 1,000.

has almost $20 million of bonds trade on an average day compared with stock
dollar volume of over $100 million. Median daily bond turnover is around half
that for equity.

We calculate bond returns as Pt−Pt−1
Pt−1

, where Pt is the last recorded transaction
price on day t . Trading costs are much higher for smaller volume trades in the
corporate bond market (Schultz, 2001, Edwards, Harris, and Piwowar, 2007).
To mitigate possible bid-ask bounce effects on the return series, we use prices
from transactions of at least $100,000 when creating the return series for each
bond. Most firms in our sample have multiple bond issues outstanding. To
avoid overweighting firms with many bonds outstanding, we aggregate bond
trading activity by firm. The unit of observation is thus a firm-day. For returns,
we calculate a weighted average bond return using daily returns from any
bonds with observed returns on a given day. The weights are calculated as the
principal amount outstanding of the observed bond as a fraction of the total
principal outstanding for all bonds with observed activity on day t . We keep
firm-day observations for which the weighted-average bond return is defined;
that is, where at least one bond of the firm traded on day t−1 and the same
bond traded on day t .

3.2 Measurement of signed volume
To estimate signed volume, we must sign the aggressive side of trades. For
equity trades, this is done using the Lee and Ready (1991) algorithm. That is,
trades above (below) the prevailing quote midpoint are considered buys (sells).
If a trade occurs at the midpoint, then the trade is classified as a buy (sell)
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if the trade price is greater (less) than the previous transaction price. We define
stock order imbalance as shares bought less shares sold divided by total shares
outstanding.

For bond trades, FINRA collects information on the reporting party’s side of
the trade or an indication that the trade is an interdealer trade. Since reporting
firms are FINRA-member broker-dealers, trades are classified as buys (sells)
if the TRACE trade indicator is “S” (“B”). We identify trades as belonging to a
round-trip transaction if two or more trades are observed at the same volume but
different prices within fifteen minutes of each other.6 For trades that are matched
as part of a round-trip trade, the first trade is presumed to be the aggressive trade.
Signed volume for a firm’s debt is defined as the difference in par values bought
and sold (across all outstanding bonds for the firm), divided by the total face
value outstanding. For both signed volume measures, we normalize by shares
or principal outstanding to allow for cross-sectional comparison.

A brief discussion on measurement error of the order imbalance measures
is warranted. Stock and bond signed volume are both measured with error.
The TAQ data omits odd-lot trades—trades for less than 100 shares. O’Hara,
Yao, and Ye (2014) document that an increasing number of trades are odd-lot
trades. The equity order imbalance measure we use here is the imbalance in
the number of shares traded, rather than the imbalance in the number of trades.
Since odd-lot trades concern small numbers of shares by definition, the share
order imbalance measure is less prone to error than the number of trades order
imbalance. O’Hara,Yao, andYe (2014) find that only 3.33% of order imbalances
are misclassified when using volume measures. Trade misclassification due to
the Lee and Ready (1991) algorithm could also lead to measurement error in
stock order imbalance.

For bonds, we expect less measurement error given the availability of order
direction indicators. However, signed order flow could be incorrectly measured
for round-trip trades if we do not correctly identify matching trades or if the
broker-dealer reports the trade in the wrong sequence. We believe measurement
error is not first order given that we find the bond within-market price impact
is positive as expected.

Summary statistics for variables used in our analysis are found in Table 2. To
reduce the effect of outliers, all variables are winsorized at the 1%/99% levels.
As expected, stock returns are more volatile than bond returns. On the other
hand, bond signed order flow exhibits more variation than does stock signed
order flow.

6 Round-trip trades have been used to estimate transactions costs by Bessembinder, Maxwell, and Venkataraman
(2006), Goldstein, Hotchkiss, and Sirri (2007), and Feldhütter (2012) for corporate bonds and Green, Hollifield,
and Schürhoff (2007) for municipal bonds.
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Table 2
Summary statistics of returns and signed volume

rb
t rs

t xb
t xs

t

Mean 3 5 −0.153 0.375
SD 75 233 2.470 1.470
Min −267 −783 −10.565 −3.924
P25 −26 −100 −0.767 −0.222
P50 1 2 −0.017 0.169
P75 31 109 0.577 0.732
Max 284 823 8.865 7.180
N 334,460 334,460 334,460 334,460

The sample runs from July 2002 to June 2011 (2,221 trading days) and contains data from 221 firms. Bond market
data is aggregated at the firm level, so the unit of observation is a firm-day. Signed volume (xi

t ) is normalized

by shares (principal) outstanding for the stock (bond) market (both are multiplied by 1,000). Returns (ri
t ) are

measured in basis points. All variables are winsorized at the 1%/99% levels.

3.3 Observability of order flow
While market makers in the model observe order flow in both markets,
this may not be true in practice. In the model, market makers can infer
orders from price changes, so the assumption that we actually need is
post-trade transparency. Given the increased use of odd-lot orders that are
not captured by the consolidated tape (O’Hara, Yao, and Ye 2014), equity
markets have become somewhat less transparent post-trade, but remain fairly
transparent. While corporate bond markets have been opaque historically,
post-trade bond prices are now transparent due to the TRACE reporting
requirement (Edwards, Harris, and Piwowar 2007; Bessembinder, Maxwell,
and Venkataraman 2006; Goldstein, Hotchkiss, and Sirri 2007). Corporate
bond trade reporting requirements for NASD member dealers’over-the-counter
bond transactions were initiated on July 1, 2002. Reported trade information
includes bond identifier, date and time of execution, trade size and price,
yield, and a buy/sell indicator for the dealer’s side of the trade. Not all of
the reported information is publicly disseminated. Trade size is censored at $5
million for investment-grade and $1 million for high-yield bonds. The buy/sell
indicator information was not publicly disseminated until November 3, 2008.
The requirement for public dissemination of bond transactions expanded in
stages. Initially, only trades in investment-grade bonds with original issuance
size of over $1 billion and trades in a group of 50 high-yield bonds (former
FIPS bonds) were publicly reported. On March 3, 2003, TRACE expanded
public reporting to cover all bonds rated A or higher with issuance of at
least $100 million. On April 14, 2003, 120 representative BBB bonds became
publicly transparent. Finally, on October 1, 2004, practically all over-the-
counter corporate bond trades were publicly reported, with full implementation
by February 7, 2005. The required timeliness of reporting also increased over
this time period. Initially, dealers were required to report trades within 75
minutes of the trade. This declined to 45 minutes on October 1, 2003, and
again to 30 minutes on October 1, 2004. Beginning July 1, 2005, dealers have
had to report trades within fifteen minutes. Our primary empirical results are
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based on daily returns and signed volume, so they are unlikely to be affected
by reporting lags for corporate bonds.

Boulatov, Hendershott, and Livdan (2013) motivate the use of a daily
vector autoregression through a Kyle model in which market makers cannot
immediately observe order flow in correlated assets. The unobservability
induces order flows to exhibit positive cross-serial correlation with subsequent
returns. Given the relatively short reporting lags for bonds and stocks during
our sample, our assumption that order flows are observable within the daily
frequency seems reasonable. Nonetheless, we investigate lead-lag relationships
between returns and order flows in a modified vector autoregression framework
in Section 4.4. Empirically, the cross-asset price impacts are primarily due to
contemporaneous order flows rather than a lead-lag relationship, suggesting
that observability is not an issue in our setting.

3.4 Additional data
Section 2.7 discusses how the estimated price impact matrix could change with
credit quality. In our empirical analysis, we use credit ratings as our measure
of credit quality. We collect credit ratings from S&P and Moody’s from FISD.
The bond ratings are translated into a numerical value ranging from 21 for
AAA/Aaa down to 1 for C or below. The firm-level rating from each agency is
calculated as the average bond rating weighted by the amount outstanding for
each bond. A firm is classified as investment grade if the average of its resulting
Moody’s and S&P ratings is greater than or equal to 12. If the average rating is
less than 12, the firm is classified as high yield. This corresponds to the usual
investment-grade/high-yield boundary of BBB-/Baa3. Approximately 70% of
our firm-day observations are classified as investment grade.

We also estimate price impacts using hourly returns and order imbalances.
Specifically, we examine firms with bonds that trade in at least five hourly bins
on average over the sample period. We construct hourly bond and stock returns
and order imbalances between the hours of 10 a.m. and 4 p.m. We require that
firms have at least 1,000 hourly observations to be included in the analysis. For
intraday bins without bond trading, we assume that the bond price is unchanged
since the last transaction price; that is, the bond return is zero for that hour. The
sample does not include overnight returns. Naturally, a smaller number of firms
satisfy these requirements; our hourly sample includes 77 firms.

4. Empirical Analysis

4.1 Empirical specification and theoretical predictions
Our primary empirical model is a linear relation between returns and order
flows in the two markets:

rit =�xit +εit ⇔ rb
it = �bbxb

it + �bsxs
it + εb

it

rs
it = �sbxb

it + �ssxs
it + εs

it

(11)
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where xs (xb) is daily signed volume normalized by shares (principal)
outstanding for the stock (bond) of firm i, and r

j

it is the return of security
j for firm i. We use returns rather than price changes as the dependent variable
because the sizes of price changes are sensitive to the absolute price level
and to facilitate cross-sectional comparison.7 Note that �ij is an estimate
of ij/P i from the model.8 In the following subsections, we implement the
linear specification (11), and we also include lagged returns and order flows as
explanatory variables in a modified VAR.

Several aspects of the � and  matrices are of interest. The magnitudes
of the diagonal elements reflect the liquidity in each market. That topic has
been extensively studied before. We are interested in the off-diagonal elements.
According to the theory, the off-diagonal elements are positive if information is
primarily about the mean of the firm’s asset value and negative if information
is primarily about the risk of the firm’s asset value. In addition to the signs
of the off-diagonal elements, we are interested in their magnitudes relative
to the magnitudes of the diagonal elements. A simple measure would be
bs/

√
bbss or sb/

√
bbss , which are equal when  is symmetric, as

established in the proposition. Instead, for reasons explained below, we use the
following as a measure of the sign and magnitude of the off-diagonal elements:

bbsb +bsss√
((bb)2 +(bs)2)((sb)2 +(ss)2)

. (12)

Assuming  is nonnegative definite and symmetric, we have

−1≤ bs

√
bbss

=
sb

√
bbss

≤1, (13)

and the measure (12) takes its minimum value −1 when bs is negative and
large in the sense that the ratio in condition (13) equals−1; it is 0 when bs =0;
and it takes its maximum value +1 when bs is positive and large in the sense
that the ratio in Condition (13) equals +1.

The measure (12) is the inner product of the rows of  divided by the product
of the norms of the rows. We call it the scaled inner product. It equals the cosine
of the angle between the rows of . More concretely, it is the correlation that
the price changes (the elements of xit ) would have if the bond and stock
signed volumes xb

it and xs
it were uncorrelated and homoscedastic.

7 We obtain similar results using excess returns rather than raw returns, suggesting that the relationship we study
is capturing the firm-specific information that is the focus of our study. Excess returns are calculated using an
equal-weighted index of returns in each market.

8 In the model, price impacts are stochastic; that is,  is time varying and depends on cumulative order flow. We
estimate the empirical equivalent of dPt =(t,Yt )dYt where dP is sampled at the daily or hourly frequency and
normalized by price. Our estimates represent an average price impact across firms and time. The (untabulated)
results are similar if we include quadratic signed order-flow terms in the return regressions to account for the
fact that we sample at a lower frequency than continuous time.
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Note that the measure (12) is unchanged if we calculate it using the � matrix
instead of the  matrix, because the divisions by prices in going from  to
� cancel in the numerator and denominator of the ratio (12). This invariance
with respect to the substitution of � for  is the reason we use the ratio (12)
rather than the ratio in (13) as a measure of the sign and magnitude of the cross-
market lambdas. The invariance implies that we can calculate the measure by
estimating the specification (11). We test whether it is equal to zero. We also
test whether it was smaller during the financial crisis, whether it is smaller
for financial firms than for nonfinancials, and whether it is different prior to
earnings announcements.

We are also interested in whether the price impact matrix  is positive
definite.9 Positive definiteness of  has two implications. First, it means that
price impact costs are positive. In a single security model with the change
in price being proportional to the trade size (�P =λ�Y ), the price impact
cost is (�P )(�Y )=λ(�Y )2 >0. In a multiasset model, positivity of the price
impact cost of any vector of trades �Y is equivalent to positive definiteness
of the price impact matrix : (�P )′(�Y )= (�Y )′(�Y )>0. Second, positive
definiteness of  means that each market is relatively more sensitive to its own
orders. Consider bond and stock orders each scaled to have a unit impact on the
stock price, meaning �Yb =1/sb and �Ys =1/ss . If  is positive definite,
the bond market will move more from the bond order than from the stock order,
meaning

bb

sb
>

bs

ss
.

Likewise, for bond and stock orders scaled to have a unit impact on the bond
price, the stock market will move more from the stock order than from the bond
order.

Recall that � is related to the price impact matrix  by ij =P i�ij .Assuming
 is symmetric, it is positive definite if and only if bb >0 and bbss >

bssb, which is equivalent to �bb >0 and �bb�ss >�bs�sb. To test whether
these conditions hold, we test the null hypothesis

�bb =0 or �bb�ss−�bs�sb =0

formulated as
�bb

(
�bb�ss−�bs�sb

)
=0. (14)

A rejection of this hypothesis also implies a rejection of the null that the scaled
inner product of the rows of � is equal to −1 or 1. We also test the positive
definiteness of  without assuming symmetry; see footnote 12.

9 As discussed in Section 2, the matrix  is singular when there is binary information, but this is special to the case
of binary information. In a previous version of this paper with continuous information, we verified the theoretical
positive definiteness of  for trading a company’s debt and equity. Other research on multisecurity Kyle models
also establishes positive definiteness (Back, 1993, Caballé and Krishnan, 1994).
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In addition to tests related to the � matrix, we are interested in time-series
properties of the returns rit , the explained parts of the returns �̂xit , and the
residuals ε̂it . In particular, we are interested in the correlations of the different
parts of the bond and stock returns and in the cross-serial correlations. These
shed light on the extent to which the markets are integrated, where price
discovery occurs, and the extent to which information is about means versus
risks.

4.2 Seemingly unrelated regressions
Table 3 presents seemingly unrelated regression (SUR) estimates of
specification (11), which is the multiasset equivalent of the price impact
specification used by Breen, Hodrick, and Korajczyk (2002). In all regressions,
standard errors are adjusted for within-firm serial correlation and daily
across-firm correlation.10

We report estimates for the full sample and for the subsamples of investment-
grade firms and high-yield firms. In each case, all elements of the estimated �

matrix are positive and highly significant. The positive signs of the off-diagonal
elements show that the order flows predominantly convey information about
asset means rather than information about asset risks. The estimates for the
subsample of high-yield firms are all at least twice the size of the estimates for
the investment-grade firms, except for the within-market equity price impact.
These results are also consistent with information being primarily about asset
means, as discussed in Section 2.7. All price impact estimates are positive in
firm-by-firm time-series regressions (Panel D of Table 3) as well.

To get a sense of the economic magnitude of the estimates, note that our
signed volume measures are scaled such that a unit change is equivalent to an
order imbalance of 0.1% of shares outstanding (principal outstanding) for stock
(bond) order flow. The standard deviation of equity signed volume is 1.47 in
our sample, meaning 0.147% of shares outstanding. A stock order imbalance of
this size is associated with an equity price impact of 41 bps (1.47×28.2) and
a bond price impact of 5 bps (1.47×3.5). For the median firm in our sample,
this order imbalance represents 670,000 shares. The existing microstructure
literature usually estimates equity price impacts at a higher frequency (often
five-minute intervals). Our daily within-equity-market price impact is of similar
magnitude to the five-minute price impact of a 1,000-share order, estimates of
which have ranged from roughly 10 to 30 bps.11 Not surprisingly, an order
imbalance of 1,000 shares has almost no price impact at the daily frequency.

10 Specifically, the variance-covariance matrix is estimated as VFirm&Time =VFirm +VTime−VRobust, as proposed
by Cameron, Gelbach, and Miller (2011) and Thompson (2011) and discussed in Petersen (2009). As a practical
matter, within-firm serial correlation has the largest effect on standard errors, which are largely unchanged when
additionally clustered by time.

11 See, for example, Breen, Hodrick, and Korajczyk (2002), Hasbrouck (2009), and Goyenko, Holden, and Trzcinka
(2009).
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Table 3
Estimation of �

rb
t rs

t

Panel A. Full sample

xb
t 1.61∗∗∗ 1.30∗∗∗

[13.76] [4.40]
xs
t 3.48∗∗∗ 28.16∗∗∗

[10.66] [17.07]

Observations 334,460 334,460
R2 0.008 0.034
Scaled inner product 0.93∗∗∗

Panel B. Investment-grade firms

xb
t 1.05∗∗∗ 0.76∗∗

[9.35] [2.29]
xs
t 1.95∗∗∗ 25.82∗∗∗

[5.27] [9.40]

Observations 228,284 228,284
R2 0.002 0.019
Scaled inner product 0.90∗∗∗

Panel C. High-yield firms

xb
t 2.24∗∗∗ 1.83∗∗∗

[13.86] [4.25]
xs
t 4.25∗∗∗ 30.03∗∗∗

[9.33] [15.77]

Observations 102,445 102,445
R2 0.016 0.051
Scaled inner product 0.91∗∗∗

Panel D. Firm-by-firm regressions

xb
t 1.72∗∗∗ 1.65∗∗∗

[15.95] [5.96]
xs
t 2.15∗∗∗ 35.52∗∗∗

[5.52] [19.56]
Observations 334,460 334,460
R2 0.011 0.043
Scaled inner product 0.48∗∗∗

This table presents estimates of seemingly unrelated regressions of bond and stock returns on signed volume in
the stock and bond markets. The sample runs from July 2002 to June 2011 (2,221 trading days) and contains data
from 221 firms. Bond market data is aggregated at the firm level, so the unit of observation is a firm-day. Signed
volume is normalized by shares (principal) outstanding for the stock (bond) market. Returns are measured in
basis points. All variables are winsorized at the 1%/99% levels. A firm-day is classified as investment grade if the
average of its S&P and Moody’s bond ratings is greater than or equal to BBB-/Baa3 on a numeric scale. Firm-
days with an average rating less than BBB-/Baa3 are classified as high yield. For Panels A–C, standard errors
are calculated clustering by firm and day. Panel D reports average coefficients from firm-by-firm time-series
regressions. t-statistics are in brackets (∗ p<0.10, ∗∗ p<0.05, ∗∗∗ p<0.01).

On the other hand, a daily bond order imbalance of 2.47 (its standard
deviation) is associated with a bond price impact of 4 bps (2.47×1.61) and an
equity price impact of 3 bps (2.47×1.30). For the median firm in our sample,
this corresponds to an order imbalance of approximately $13 million. Edwards,
Harris, and Piwowar (2007) and Bessembinder, Maxwell, and Venkataraman
(2006) allow bond trade execution costs to vary with trade size. Their estimates
of the half-spread for a $10 million trade range from 4 to 18 bps, and our daily
price impact estimate falls within this range.
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The scaled inner product of the rows of the estimated � matrix is 0.93. We can
strongly reject the null hypothesis that the scaled inner product is zero for the
full sample and both credit-quality subsamples. The scaled inner products are
similar for investment-grade (0.90) and high-yield firms (0.91). Furthermore,
for the full sample and for each credit-quality subsample, the Wald test strongly
rejects the null hypothesis (14)—p<0.001 in all cases—so we conclude that
 is positive definite.12 This also implies a rejection of the null that the scaled
inner product is equal to 1. Though the scaled inner product is less than 1, so
the fitted bond and stock returns are not perfectly correlated, the large point
estimate implies that the correlation between the fitted bond and stock returns
should be large. This is indeed the case, as we demonstrate next.

Table 4 reports cross-sectional distributions of the time-series correlations
of the components of returns explained by signed volume along with the
correlations of returns, signed order flows, and the residual components
of returns (Panel A). The correlations of daily stock and bond returns are
moderate, with a median value of 11%. However, the fitted values from
specification (11) are highly correlated. The median correlation is 80%, and the
5th percentile correlation is 62%. These high correlations are consistent with
private information being primarily about means, as explained in Section 2.9.
On the other hand, the residual components of returns are not highly correlated.
The residual components could reflect public information. If so, the low
correlation implies that public information is mixed, being partly about risks
and partly about means. The low correlation of the residuals could also reflect
market segmentation, as suggested by Collin-Dufresne, Goldstein, and Martin
(2001) and Kapadia and Pu (2012) based on analyses of total stock and bond
returns.

We also present cross-serial correlations in Panel B of Table 4. We find
evidence that stock returns lead bond returns, but little evidence of the
opposite relationship. We account for this dynamic relationship in the vector
autoregression analysis in Section 4.4. Interestingly, this lead-lag relationship
is confined to the portions of returns unexplained by signed volume. The
cross-serial correlations of the explained portions of returns are remarkably
symmetric when alternating the lagged market assignment, indicating that
price discovery is not dominated by either market with respect to information
conveyed by order flows.

12 We have also verified the positive definiteness of  without assuming symmetry. In the absence of symmetry,
 is positive definite if and only if +′ is symmetric and positive definite. This is equivalent to �bb >0 and

4�bb�ss >

(√
Pb
Ps

�bs +
√

Ps
Pb

�sb

)2

. In our sample, the ratio
Pb
Ps

has a median value of about 3. We can also

reject the null

�bb

[
4�bb�ss−

(
30.5�bs +3−0.5�sb

)2
]

=0.
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Table 4
Correlation statistics

Percentile: 5th 25th Median 75th 95th

Panel A. Contemporaneous correlations

ρ(rb
t ,rs

t ) −0.114 −0.036 0.111 0.261 0.541

ρ(xb
t ,xs

t ) −0.060 −0.028 −0.006 0.016 0.042

ρ(r̂b
t ,r̂s

t ) 0.615 0.717 0.796 0.874 0.973

ρ(ε̂b
t ,ε̂s

t ) −0.115 −0.030 0.107 0.249 0.539

Panel B. Cross-serial correlations

ρ(rb
t ,rs

t−1) −0.010 0.049 0.102 0.159 0.214

ρ(rb
t−1,rs

t ) −0.069 −0.017 0.007 0.036 0.089

ρ(r̂b
t ,r̂s

t−1) 0.065 0.127 0.187 0.251 0.400

ρ(r̂b
t−1,r̂s

t ) 0.073 0.124 0.184 0.253 0.389

ρ(ε̂b
t ,ε̂s

t−1) −0.012 0.049 0.101 0.154 0.213

ρ(ε̂b
t−1,ε̂s

t ) −0.066 −0.018 0.010 0.039 0.093

This table presents cross-sectional distributions of correlations of various time series across markets and time
periods. Panel A shows correlations of stock and bond returns (ri

t ), signed volume (xi
t ), and the explained and

residual components of returns. Panel B shows cross-serial correlations of returns and the decomposition of
returns based on order flows. The sample runs from July 2002 to June 2011 (2,221 trading days) and contains
data from 221 firms. Bond market data is aggregated at the firm level, so the unit of observation is a firm-
day. Signed volume (xi

t ) is normalized by shares (principal) outstanding for the stock (bond) market (both are

multiplied by 1,000). The explained portion of returns (r̂ i
t ) is measured as the fitted value from specification (11)

presented in Table 3. The residual component (ε̂i
t ) is computed from the same model. Returns and signed volume

are winsorized at the 1%/99% levels.

Table 5 reports the estimate of specification (11) from the panel of hourly
returns and order flows for our sample of 77 firms. For the full sample, all
estimated price impacts are positive, and all are statistically significant except
for the response of stock returns to bond signed volume, which has a t-statistic
of 1.3. The within-market price impacts are much larger than the cross-market
impacts, the within-stock-market price impact being the largest. However, we
can still reject the null that the scaled inner product of the rows of the � matrix
is zero, although the estimated scaled inner product is much smaller (0.14).
The credit-quality subsample analysis indicates that the positive cross-market
effects are strongest in the high-yield firms. As at the daily frequency, we reject
the null hypothesis (14) for the full sample and both credit quality subsamples
(p<0.001), so we can conclude that  is positive definite.

4.3 Subsample analysis
The previous section establishes that markets interpret order flow as conveying
information that primarily concerns asset means. In this section, we ask whether
this result holds for various subsamples in which it is plausible that investors
may possess different types of private information. A natural place to start
is determining how much time-series variation exists for our price impact
estimates, particularly whether there are subsamples with negative cross-market
price impacts.
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Table 5
Hourly estimation of �

rb
t rs

t

Panel A. Full sample

xb
t 2.91∗∗∗ 0.36

[9.17] [1.30]
xs
t 0.40∗∗∗ 38.50∗∗∗

[2.78] [8.20]

Observations 587,334 587,334
R2 0.003 0.021
Scaled inner product 0.14∗∗∗

Panel B. Investment-grade firms

xb
t 2.46∗∗∗ 0.21

[7.83] [0.73]
xs
t 0.18 33.21∗∗∗

[1.06] [5.81]

Observations 512,881 512,881
R2 0.002 0.013
Scaled inner product 0.08

Panel C. High-yield firms

xb
t 4.88∗∗∗ 1.09

[14.78] [1.51]
xs
t 0.82∗∗∗ 48.44∗∗∗

[3.72] [6.19]

Observations 73,949 73,949
R2 0.007 0.051
Scaled inner product 0.19∗∗∗

Panel D. Firm-by-firm regressions

xb
t 5.34∗∗∗ 1.13

[7.52] [1.38]
xs
t −0.04 35.38∗∗∗

[−0.20] [6.42]

Observations 587,334 587,334
R2 0.006 0.033
Scaled inner product −0.01

This table presents estimates of seemingly unrelated regressions of bond and stock returns on signed volume in
the stock and bond markets. The sample runs from July 2002 to June 2011 (2,221 trading days) and contains data
from 77 firms. Bond market data is aggregated at the firm level, so the unit of observation is a firm-day. Signed
volume is normalized by shares (principal) outstanding for the stock (bond) market. Returns are measured in
basis points. All variables are winsorized at the 1%/99% levels. A firm-day is classified as investment grade if the
average of its S&P and Moody’s bond ratings is greater than or equal to BBB–/Baa3 on a numeric scale. Firm-
days with an average rating less than BBB–/Baa3 are classified as high yield. For Panels A–C, standard errors
are calculated clustering by firm and day. Panel D reports average coefficients from firm-by-firm time-series
regressions. t-statistics are in brackets (∗ p<0.10, ∗∗ p<0.05, ∗∗∗ p<0.01).

Figure 1 shows the time series of estimates of specification (11) over rolling
two-year windows. We find no evidence of negative cross-market price impacts
over our sample. However, the estimates do exhibit time-series variation. In
particular, both own-market and cross-market lambdas increased during the
financial crisis. To analyze this further, we estimate the specification (11)
separately during the pre-crisis, crisis, and post-crisis periods. Because financial
firms were at the heart of the crisis, we also estimate the specification (11)
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(a)

(b)

Figure 1
Time series of price impact coefficients
This figure plots the time series of price impact estimates from seemingly unrelated regressions of bond and stock
returns on signed volume in the stock and bond markets. The monthly time series is estimated using 24-month
overlapping windows. The sample runs from July 2002 to June 2011 (2,221 trading days) and contains data
from 221 firms. Bond market data is aggregated at the firm level, so the unit of observation is a firm-day. Signed
volume is normalized by shares (principal) outstanding for the stock (bond) market. Returns are measured in
basis points. All variables are winsorized at the 1%/99% levels.

separately in each period for financial and nonfinancial firms.13 We take the
crisis time period to be July 2007 to June 2009. These dates correspond to the
collapse of the Bear Stearns subprime funds and the NBER-dated end of the
recession, respectively.

Table 6 reports the scaled inner product for each subsample. There was a
significant drop in this measure of the cross-market lambdas for financial firms
during the crisis. It also dropped for nonfinancials from the pre-crisis period to
the crisis and again from the crisis to the post-crisis period, though the latter
decline is not statistically significant. The drop during the crisis for financial
firms is consistent with there being more information about risks in the order

13 We classify financial firms as those with SIC codes between 6000 and 6999.
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Table 6
Scaled inner product by industry and time-period

Full Sample Non-financial Financial �Industry

Pre-crisis 0.98∗∗∗ 0.98∗∗∗ 0.87∗∗∗ 0.11
[0.00] [0.00] [0.00] [0.30]

Crisis 0.73∗∗∗ 0.79∗∗∗ 0.37∗∗ 0.42∗∗
[0.00] [0.00] [0.04] [0.02]

Post-crisis 0.73∗∗∗ 0.69∗∗∗ 0.88∗∗∗ −0.18
[0.00] [0.00] [0.00] [0.22]

�Crisis−Pre −0.25∗∗∗ −0.19∗∗∗ −0.50∗∗
[0.00] [0.00] [0.01]

�Post−Pre −0.24∗∗∗ −0.29∗∗∗ 0.01
[0.00] [0.00] [0.97]

�Post−Crisis 0.00 −0.10 0.51∗∗
[0.97] [0.34] [0.04]

This table presents estimates of the scaled inner product of the rows of the estimated � matrix from seemingly
unrelated regressions of bond and stock returns on signed volume in the stock and bond markets. Signed volume
is interacted with indicator variables for financial firms and the crisis period. The sample runs from July 2002
to June 2011 (2,221 trading days) and contains data from 221 firms. Bond market data is aggregated at the
firm level, so the unit of observation is a firm-day. Financial firms are those with SIC codes between 6000 and
6999. The crisis period includes observations from July 2007 to June 2009. Signed volume is normalized by
shares (principal) outstanding for the stock (bond) market. Returns are measured in basis points. All variables
are winsorized at the 1%/99% levels. p-values for a test that an estimate is equal to 0 are presented in brackets
and are calculated using a covariance matrix allowing for clustering by firm and day (∗ p<0.10, ∗∗ p<0.05,∗∗∗ p<0.01).

flows for financial firms during the crisis. Another possible explanation is that
the bond and stock markets were less integrated during this time. There is
evidence that the corporate bond and credit default swap (CDS) markets became
less integrated during the crisis. Bai and Collin-Dufresne (2013) report that,
on average, bond spreads exceeded CDS spreads by hundreds of basis points
during the crisis, and they attribute that gap to a limited supply of arbitrage
capital for purchasing corporate bonds. It is not clear why a limited supply of
capital for buying the physical to arbitrage a physical/derivative spread would
cause disintegration of the market for two physicals (stocks and bonds), so it
seems plausible that the change in the cross-market bond/stock lambda could
stem from a different cause. Our model suggests that the cause could be an
increase in private information about risks. In any case, the scaled inner product
is significantly positive for each time and industry subsample, indicating that
the predominant type of information concerned asset means.

The informational environment of a firm is potentially different prior to
an earnings announcement (Korajczyk, Lucas, and McDonald 1991). To see
if there are differences in the responses of returns to order flows in such
periods, we estimate the specification (11) separately for days within a two-
week period prior to an announcement and all other days (Table 7).14 All price
impacts are positive in both periods, although the effect of bond order flows on
equity returns is not statistically significant prior to earnings announcements.

14 We thank an anonymous referee for suggesting this analysis.
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Table 7
Estimation of � around earnings announcements

rb
t rs

t

Panel A. Non-pre-earnings announcement days

xb
t 1.57∗∗∗ 1.40∗∗∗

[12.41] [4.40]
xs
t 3.39∗∗∗ 27.92∗∗∗

[10.82] [16.55]

Observations 284,003 284,003
R2 0.007 0.034
Scaled inner product 0.93∗∗∗

Panel B. Pre-earnings announcement days

xb
t 1.84∗∗∗ 0.74

[11.43] [1.38]
xs
t 4.05∗∗∗ 29.59∗∗∗

[7.50] [15.03]

Observations 50,457 50,457
R2 0.010 0.034
Scaled inner product 0.92∗∗∗
Panel C. Pre-earnings — Same ex post price changes

xb
t 1.81∗∗∗ 0.47

[9.49] [0.78]
xs
t 4.56∗∗∗ 28.84∗∗∗

[8.22] [13.70]

Observations 33,919 33,919
R2 0.012 0.035
Scaled inner product 0.94∗∗∗

Panel D. Pre-earnings — Opposite ex post price changes

xb
t 1.92∗∗∗ 1.52

[6.45] [1.47]
xs
t 2.70∗∗∗ 31.60∗∗∗

[3.60] [10.79]

Observations 16,538 16,538
R2 0.006 0.033
Scaled inner product 0.84∗∗∗

This table presents estimates of seemingly unrelated regressions of bond and stock returns on signed volume in
the stock and bond markets. The sample runs from July 2002 to June 2011 (2,221 trading days) and contains
data from 221 firms. The estimation is done separately for non-pre-earnings intervals (Panel A) and the two-
week interval preceding earnings announcements (Panel B). The pre-earnings estimation is also conditioned on
whether the ex post price reactions move in the same or opposite directions. Bond market data is aggregated
at the firm level, so the unit of observation is a firm-day. Signed volume is normalized by shares (principal)
outstanding for the stock (bond) market. Returns are measured in basis points. All variables are winsorized at the
1%/99% levels. Standard errors are calculated clustering by firm and day. t-statistics are in brackets (∗ p<0.10,∗∗ p<0.05, ∗∗∗ p<0.01).

Moreover, the scaled inner products are similar for pre-announcement days
(0.92) and all other days (0.93).

The information content of earnings announcements can differ from
instance to instance; some announcements may contain information that
primarily concerns asset risks, while others concern asset means. In practice,
market makers should treat pre-earnings order flow as concerning the
predominant form of information. In our sample, approximately 30% of
the quarterly earnings announcements are associated with opposite-direction
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three-day cumulative bond and stock returns from t−1 to t +1, consistent
with information about means being the predominant type; however, some
announcements apparently do contain information about risks rather than
means. The scaled inner product is 0.84 (0.94) for pre-announcement periods
with subsequent divergent (concordant) price reactions, which is consistent
with there being more private information about risks prior to announcements
with divergent reactions, but the difference between the scaled inner products
is not statistically significant (p=0.18).

4.4 Vector autoregressions
The cross-serial correlation analysis in Section 4.2 shows evidence of a possible
dynamic relationship between returns and order flows. In this subsection, we
check that our results are robust to such dynamics by allowing returns and order
flows to depend on their lagged values. We employ the extended Hasbrouck
(1991) vector autoregression (VAR) framework used by Chan, Chung, and Fong
(2002) and Chan, Menkveld, and Yang (2007). It differs from a traditional VAR
in that signed order flows are presumed to affect contemporaneous returns.

Table 8 reports estimates of an extended VAR for returns and signed volume.
Let ri,t =[rb

i,t rs
i,t ]
′ represent returns on the bond and stock over interval t and

xi,t =[xb
i,t xs

i,t ]
′ represent bond and stock signed volume over interval t . We

estimate the system:

ri,t =a1ri,t−1 + ...+apri,t−p +�xi,t +b1xi,t−1 + ...+bpxi,t−p +ε1,i,t

xi,t =c1ri,t−1 + ...+cpri,t−p +d1xi,t−1 + ...+dpxi,t−p +ε2,i,t

(15)

where a1,...,ap,�,b1,...,bp,c1,...,cp,d1,...dp are 2×2 matrices of coeffi-
cients. � contains the coefficients of primary interest. We estimate the model
with p=5 lags.15 Table 8 shows that the coefficients of signed bond and
stock volume in the return equations are all positive and highly significant.
We continue to reject the null that the scaled inner product of the rows of the
estimated � matrix is equal to 0 at the 0.1% level. We can also strongly reject the
null hypothesis (14)—p<0.001—so we can again conclude that  is positive
definite.

We calculate impulse response functions as in Hasbrouck (1991), who argues
for persistent price impacts as evidence of informed trading. Figure 2 shows the
cumulative price responses due to a one-standard-deviation shock to bond or
stock order flows. The impulse response functions are constant after about five
trading days, which indicates permanent price effects.Aone-standard-deviation
shock to bond order flow leads to similar price impacts in both the stock and
bond market (Panel 2a) of around 5–6 basis points. A similar shock to stock
order flow produces a permanent stock return of over 50 bps and a permanent

15 Results are qualitatively similar for different lag lengths.
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Table 8
Relationship between returns and signed volumes of corporate bonds and stocks

Dependent variables

rb
t rs

t xb
t xs

t

xb
t 1.47∗∗∗ 1.39∗∗∗

[11.08] [3.84]

xs
t 3.50∗∗∗ 36.04∗∗∗

[9.52] [14.47]

rb
t−1 −0.08∗∗∗ 0.08∗∗∗ −0.32∗∗∗ 0.07

[−7.46] [2.80] [−2.91] [1.12]

rb
t−2 0.02∗∗ 0.04 −0.42∗∗∗ 0.14∗∗

[2.02] [1.43] [−4.13] [2.17]

rs
t−1 0.04∗∗∗ −0.02 0.14∗∗∗ −0.10∗∗∗

[15.73] [−1.60] [5.14] [−3.75]

rs
t−2 0.01∗∗∗ −0.02 0.05∗ −0.10∗∗∗

[6.72] [−1.11] [1.81] [−3.75]

xb
t−1 0.08 −0.26 45.14∗∗∗ −3.70∗∗

[0.87] [−1.01] [10.39] [−2.49]

xb
t−2 0.23∗∗∗ 0.35 21.29∗∗∗ −5.30∗∗∗

[2.59] [1.34] [5.45] [−3.67]

xs
t−1 0.27 −7.23∗∗∗ −12.91∗∗ 238.52∗∗∗

[1.38] [−8.00] [−2.36] [37.15]

xs
t−2 −0.48∗∗ −3.91∗∗∗ −16.11∗∗∗ 123.85∗∗∗

[−2.39] [−5.22] [−3.06] [25.30]

Observations 211,997 211,997 211,997 211,997
R2 0.034 0.041 0.006 0.228
Scaled inner product 0.94∗∗∗

This table presents estimates of a modified VAR containing returns and signed volume from both the stock and
bond markets. Contemporaneous signed volume is presumed to affect returns as in Hasbrouck (1991) and Chan,
Chung, and Fong (2002). The sample runs from July 2002 to June 2011 (2,221 trading days) and contains data
from 221 firms. Bond market data is aggregated at the firm level, so the unit of observation is a firm-day. Signed
volume is normalized by shares (principal) outstanding for the stock (bond) market. Returns are measured in
basis points. All variables are winsorized at the 1%/99% levels. Standard errors are clustered by firm and by day.
Coefficients in the order flow equations (xb and xs ) have been multiplied by 1,000. Five lags of each variable are
included in the regressions (estimates for lags 3–5 are omitted for space). t-statistics are in brackets (∗ p<0.10,∗∗ p<0.05, ∗∗∗ p<0.01).

bond return of around 10 bps (Panel 2b). In sum, the permanent within- and
cross-market effects are consistent with both bond and stock order flows having
information content and with the information being predominantly about asset
means rather than asset risks.

As discussed in the introduction, a number of studies have addressed the
relative informational efficiency of the two markets with mixed results. The
coefficients on lagged returns in our VAR speak to this debate (Table 8). In our
sample, both lagged cross-market returns are positively associated with returns
in each market. This is inconsistent with a single market dominating price
discovery. Another interesting result concerns the dynamics of signed order
flow within and across markets. Signed order flow in each market exhibits
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(a)

(b)

Figure 2
Impulse response functions
This figure plots impulse response functions for bond and stock returns based on the daily VAR model. The
functions plot the cumulative return response to a one-standard-deviation shock to signed volume in each market.
The impulse response functions use parameter estimates reported in Table 8 using the extended Hasbrouck (1991)
VAR model.

1413

 at :: on Septem
ber 29, 2015

http://rfs.oxfordjournals.org/
D

ow
nloaded from

 



The Review of Financial Studies / v 28 n 5 2015

Table 9
High-yield bonds versus investment-grade bonds

Dependent variables

rb
t rs

t xb
t xs

t

xb
t 0.95∗∗∗ 0.87∗∗

[6.48] [2.05]

xb
t * HY Dummy 1.38∗∗∗ 1.63∗∗

[4.71] [2.17]

xs
t 1.95∗∗∗ 32.74∗∗∗

[5.00] [8.39]

xs
t * HY Dummy 2.69∗∗∗ 7.27∗

[4.64] [1.70]

rb
t−1 −0.07∗∗∗ 0.08∗∗∗ −0.38∗∗∗ 0.06

[−6.34] [2.91] [−3.10] [0.90]

rb
t−2 0.02∗ 0.04 −0.45∗∗∗ 0.16∗∗

[1.95] [1.34] [−3.79] [2.24]

rs
t−1 0.04∗∗∗ −0.02 0.13∗∗∗ −0.11∗∗∗

[15.18] [−1.63] [4.93] [−4.17]

rs
t−2 0.01∗∗∗ −0.02 0.05∗∗ −0.11∗∗∗

[6.09] [−1.21] [1.96] [−3.79]

xb
t−1 0.13 −0.24 43.03∗∗∗ −3.85∗∗

[1.32] [−0.84] [9.03] [−2.54]

xb
t−2 0.20∗∗ 0.15 19.60∗∗∗ −5.78∗∗∗

[2.17] [0.51] [4.26] [−3.67]

xs
t−1 0.41∗∗ −6.92∗∗∗ −12.18∗∗ 237.83∗∗∗

[2.14] [−6.90] [−2.24] [33.15]

xs
t−2 −0.52∗∗ −4.44∗∗∗ −12.04∗∗ 120.07∗∗∗

[−2.55] [−5.68] [−2.20] [23.65]

Observations 181,626 181,626 181,626 181,626
R2 0.035 0.042 0.006 0.220
Scaled inner product – IG 0.92∗∗∗
Scaled inner product – HY 0.93∗∗∗
�HY−IG 0.01

This table presents estimates of a modified VAR containing returns and signed volume from both the stock and
bond markets. Contemporaneous signed volume is presumed to affect returns as in Hasbrouck (1991) and Chan,
Chung, and Fong (2002), and is interacted with an indicator for high-yield debt. The sample runs from July 2002
to June 2011 (2,221 trading days) and contains data from 221 firms. Bond market data is aggregated at the firm
level, so the unit of observation is a firm-day. Signed volume is normalized by shares (principal) outstanding for
the stock (bond) market. Returns are measured in basis points. All variables are winsorized at the 1%/99% levels.
A firm-day is classified as investment grade if the average of its S&P and Moody’s bond ratings is greater than or
equal to BBB–/Baa3 on a numeric scale. Firm-days with an average rating less than BBB–/Baa3 are classified
as high yield. Standard errors are clustered by firm and by day. Coefficients in the order flow equations (xb and
xs ) have been multiplied by 1,000. Five lags of each variable are included in the regressions (estimates for lags
3–5 are omitted for space). t-statistics are in brackets (∗ p<0.10, ∗∗ p<0.05, ∗∗∗ p<0.01).

positive serial correlation. In addition, the cross-market serial correlations of
order flows are negative.

Table 9 presents estimates of the VAR including interactions of signed bond
and stock volumes with a high-yield dummy variable. For the high-rated firms,
all elements of the estimated� matrix are positive and significant. Moreover, the
interaction terms are all positive and significant. This corroborates our previous
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Table 10
Daily order imbalance—number of trades

Dependent variables

rb
t rs

t x
0,b
t x

0,s
t

x
0,b
t 3.82∗∗∗ 7.90∗∗∗

[5.19] [3.14]

x
0,s
t 26.89∗∗∗ 385.00∗∗∗

[4.52] [4.98]

rb
t−1 −0.07∗∗∗ 0.08∗∗∗ −0.13∗∗∗ 0.01

[−7.35] [2.97] [−4.74] [1.41]

rb
t−2 0.02∗∗ 0.04 −0.10∗∗∗ 0.02∗∗∗

[1.97] [1.45] [−4.27] [3.33]

rs
t−1 0.04∗∗∗ −0.02 0.02 −0.03∗∗∗

[15.72] [−1.26] [1.57] [−8.26]

rs
t−2 0.02∗∗∗ −0.02 0.01 −0.01∗∗∗

[6.80] [−1.07] [1.30] [−2.69]

x
0,b
t−1 −0.42 −0.98 197.58∗∗∗ 0.89∗

[−1.05] [−0.91] [9.14] [1.90]

x
0,b
t−2 1.03∗∗∗ −0.20 125.10∗∗∗ 0.82

[3.43] [−0.13] [7.20] [1.21]

x
0,s
t−1 0.56 −86.11∗∗∗ 53.45 261.48∗∗∗

[0.29] [−3.62] [1.56] [18.52]

x
0,s
t−2 −7.84∗∗∗ −40.88∗∗ −7.84 105.73∗∗∗

[−2.79] [−2.05] [−0.43] [5.23]

Observations 210,110 210,110 210,110 210,110
R2 0.031 0.041 0.141 0.205
Scaled inner product 0.99∗∗∗

This table presents estimates of a modified VAR containing returns and the signed volume from both the stock
and bond markets. Contemporaneous signed volume is presumed to affect returns as in Hasbrouck (1991) and
Chan, Chung, and Fong (2002). x0 is the order imbalance between the number of buys less number of sells. The
sample runs from July 2002 to June 2011 (2,221 trading days) and contains data from 221 firms. Bond market
data is aggregated at the firm level, so the unit of observation is a firm-day. Signed volume is normalized by
shares (principal) outstanding for the stock (bond) market. Returns are measured in basis points. All variables
are winsorized at the 1%/99% levels. Standard errors are clustered by firm and by day. Coefficients in the order
flow equations (x0,b and x0,s ) have been multiplied by 1,000. Five lags of each variable are included in the
regressions (estimates for lags 3–5 are omitted for space). t-statistics are in brackets (∗ p<0.10, ∗∗ p<0.05,∗∗∗ p<0.01).

result that price impacts of order flows, both within and across markets, are
larger for low-rated firms.

Our results are robust to the specification of order imbalance as well. Table 10
reports estimates of the extended VAR with the bond and stock order imbalances
measured as the difference between the number of buyer-initiated trades and
the number of seller-initiated trades, normalized by the average number of
trades in the previous calendar month. This is motivated by Jones, Kaul, and
Lipson (1994), who suggest that trade size contains no more information than
the number of transactions. Hasbrouck (1991) also uses only the direction of the
trade in his VAR analysis, arguing that the model leads to less variable estimates
of price impacts. Bond and stock returns are again positively related to both
within- and cross-market order flows. The bond trade imbalance variable has
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Table 11
Daily order imbalance—direction

Dependent variables

rb
t rs

t x
0,b
t x

0,s
t

x
0,b
t 4.19∗∗∗ 4.39∗∗∗

[14.62] [6.27]

x
0,s
t 2.23∗∗∗ 33.29∗∗∗

[6.83] [12.96]

rb
t−1 −0.07∗∗∗ 0.08∗∗∗ −0.05 0.06

[−7.36] [2.83] [−1.29] [1.46]

rb
t−2 0.02∗∗ 0.04 −0.13∗∗∗ 0.08∗∗

[2.12] [1.54] [−3.67] [2.13]

rs
t−1 0.04∗∗∗ −0.02∗ 0.06∗∗∗ −0.02

[15.91] [−1.72] [5.11] [−1.00]

rs
t−2 0.01∗∗∗ −0.02 0.03∗∗∗ −0.02

[6.59] [−1.30] [2.92] [−1.59]

x
0,b
t−1 −0.54∗∗∗ −0.36 29.30∗∗∗ −4.82∗∗

[−2.78] [−0.57] [12.43] [−2.19]

x
0,b
t−2 0.36∗∗ 0.55 19.31∗∗∗ −6.39∗∗∗

[1.96] [0.87] [9.10] [−2.72]

x
0,s
t−1 0.32∗ −5.04∗∗∗ −1.79 160.57∗∗∗

[1.67] [−6.19] [−0.71] [43.63]

x
0,s
t−2 −0.24 −2.44∗∗∗ −1.54 102.88∗∗∗

[−1.18] [−3.09] [−0.60] [28.17]

Observations 211,997 211,997 211,997 211,997
R2 0.032 0.020 0.003 0.110
Scaled inner product 0.58∗∗∗

This table presents estimates of a modified VAR containing returns and the signed volume from both the stock and
bond markets. Contemporaneous signed volume is presumed to affect returns as in Hasbrouck (1991) and Chan,
Chung, and Fong (2002). x0 is an indicator variable for the direction of the daily signed order imbalance with
x0 = 1 (−1) for a buy (sell) order imbalance. The sample runs from July 2002 to June 2011 (2,221 trading days)
and contains data from 221 firms. Bond market data is aggregated at the firm level, so the unit of observation is
a firm-day. Signed volume is normalized by shares (principal) outstanding for the stock (bond) market. Returns
are measured in basis points. All variables are winsorized at the 1%/99% levels. Standard errors are clustered by
firm and by day. Coefficients in the order flow equations (x0,b and x0,s ) have been multiplied by 1,000. Five
lags of each variable are included in the regressions (estimates for lags 3–5 are omitted for space). t-statistics are
in brackets (∗ p<0.10, ∗∗ p<0.05, ∗∗∗ p<0.01).

a standard deviation of 0.67, so a one-standard-deviation shock to bond trade
order imbalance is associated with a 3 (5) bps bond (stock) return. The stock
trade imbalance variable has a standard deviation of 0.14, so a one-standard-
deviation shock to stock trade order imbalance is associated with a 4 (54) bps
bond (stock) return.

Table 11 reports estimates of the extended VAR with the bond and stock order
imbalances replaced by their signs. The empirical estimates are again consistent
with all of the lambdas being positive and with the matrix of lambdas being
positive definite. A day with a buying order imbalance for stocks (bonds) is
associated with own-market returns of 33 (4) bps and cross-market returns of
2 (4) bps. As in the other specifications, the impact of bond orders is similar
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Table 12
Hourly relationship between returns and signed volumes of corporate bonds and stocks

Dependent variables

rb
t rs

t xb
t xs

t

xb
t 2.92∗∗∗ 0.39

[9.15] [1.20]

xs
t 0.25∗ 41.49∗∗∗

[1.76] [7.73]

rb
t−1 −0.15∗∗∗ 0.01 0.06 −0.02

[−30.61] [1.24] [1.27] [−0.68]

rb
t−2 −0.06∗∗∗ −0.00 −0.02 0.02

[−22.28] [−0.16] [−0.72] [0.84]

rs
t−1 0.00∗∗∗ −0.01∗ 0.02∗∗∗ 0.04∗∗∗

[2.59] [−1.83] [3.06] [3.37]

rs
t−2 0.00∗∗∗ 0.00 0.01∗ −0.00

[2.96] [0.22] [1.85] [−0.20]

xb
t−1 −0.49∗∗∗ 0.04 −13.32∗∗∗ −2.63∗∗

[−5.26] [0.15] [−4.94] [−2.56]

xb
t−2 −0.36∗∗∗ 0.36 2.32 −2.78∗∗

[−4.74] [1.31] [0.79] [−2.10]

xs
t−1 0.05 −3.54∗∗∗ −4.64∗ 201.26∗∗∗

[0.33] [−2.71] [−1.76] [24.52]

xs
t−2 0.10 −4.30∗∗∗ −2.73 90.36∗∗∗

[0.82] [−4.71] [−1.20] [16.11]

Observations 584,724 584,724 584,724 584,724
R2 0.027 0.022 0.000 0.096
Scaled inner product 0.09∗

This table presents estimates of a modified VAR containing hourly returns and signed volume from both the
stock and bond markets. Contemporaneous signed volume is presumed to affect returns as in Hasbrouck (1991)
and Chan, Chung, and Fong (2002). The sample runs from July 2002 to June 2011 (2,221 trading days) and
contains data from 77 firms. Bond market data is aggregated at the firm level, so the unit of observation is a
firm-day. Signed volume is normalized by shares (principal) outstanding for the stock (bond) market. Returns
are measured in basis points. All variables are winsorized at the 1%/99% levels. Standard errors are clustered by
firm and by day. Coefficients in the order flow equations (xb and xs ) have been multiplied by 1,000. Five lags
of each variable are included in the regressions (estimates for lags 3–5 are omitted for space). t-statistics are in
brackets (∗ p<0.10, ∗∗ p<0.05, ∗∗∗ p<0.01).

for both bond and stock returns, while the effect of stock order flows is larger
for stock returns than for bond returns.

Table 12 reports estimates of the extended VAR using our panel of hourly
returns and signed order imbalances for 77 firms. The price impacts are all
positive and significant, with the exception of the effect of bond order flows
on stock returns, which is positive but insignificant (t-statistic of 1.2). We can
reject the null that the scaled inner product of the estimated � matrix is zero
with a p-value of 0.050.

5. Conclusion

It has long been understood that the low correlation between corporate bond
and stock returns could be due to the nature of information flowing into the
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market—namely, whether it is about the mean or the risk of the firm’s asset
value. We show that these two types of information can be distinguished
empirically, to the extent that information is private information that arrives
to the market via order flows. They can be distinguished because they have
different implications for the sign of the cross-market Kyle’s lambdas. If private
information is primarily about the expected value of the firm’s assets, then
the equilibrium cross-market price impacts are positive. On the other hand,
if private information primarily concerns the variance of the asset value, then
cross-market price impacts are negative. If information is mixed, then the cross-
market price impacts—and the correlation of bond and stock returns—can be
zero or near zero.

We empirically analyze price responses to order flows using transactions
data from 2002 through 2011. Returns are positively related to daily order
imbalances both within the same market and across markets. These results
hold controlling for lagged returns and lagged order imbalances as well
as in firm-by-firm time-series regressions. Regressions with hourly data
produce similar results. The positivity of cross-market lambdas implies that
information that arrives to the market via order flows is primarily about
asset means. Moreover, the relative magnitude of the within-market price
impacts is larger than the cross-market price impacts in the data, as predicted
by multiasset Kyle models. We also show that bond and stock markets
are integrated in their responses to order flows: the components of returns
explained by order flows are highly correlated across markets, even though
the order flows themselves are virtually uncorrelated, and neither leads
the other.

It is possible that there is more evidence of information about risks in other
markets. Rourke (2014) documents that put and call orders have significant
positive effects on straddle returns, which suggests that option order flow
may contain information about risks. It is easy to generalize our model to
include options in addition to debt and equity; however, the binary state
assumption may be too simple for analyzing additional markets. With only
two states, if information is purely about the asset risk, then the stock,
call, and put values should be monotonically related, all being higher in the
high-risk state. This implies that cross-market put/call lambdas should be
positive (they would have the sign of �P�C, where � denotes the state-
2 value minus the state-1 value, and P and C denote the put and call,
respectively). However, Rourke finds that cross-market call/put lambdas are
negative. On the other hand, in a two-state world with information purely
about the asset mean, the call and put values are inversely related, implying
that the cross-market straddle/call and straddle/put lambdas should have
opposite signs, which is again inconsistent with Rourke’s results. Development
and estimation of a more general model for the simultaneous analysis of
debt, equity, and option markets may be a desirable objective for future
research.
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Appendix A. Proofs

Let ξ̃ denote the binary signal observed by the informed trader (for example, ξ̃ =(μ̃,σ̃ ) in the
lognormal example). The signal ξ̃ has two possible values, ξ1 and ξ2. It is convenient to write B(ξ̃ )
and S(ξ̃ ) for the expected bond and stock values conditional on the signal, so the symbols B(ξi )
and S(ξi ) replace what were denoted in the text as Bi and Si .

Let G
def
= {Gt |0≤ t≤T } denote the completion of the filtration generated by Z, form the enlarged

filtration with σ–fields Gt ∨σ (ξ̃ ), and let F
def
= {Ft |0≤ t≤T } denote the completion of the enlarged

filtration. The filtration F represents the informed trader’s information.
Before beginning the proof of the proposition, we will explain why the informed trader can infer

enough about the liquidity trade process Z from equilibrium prices to implement the equilibrium
trading strategy.As remarked in Section 2, the equilibrium prices revealAt−α =�′Yt =�′(Xt +Zt ).
Define Wt =�′Zt . We can project Zb and Zs on W as

Zb =
δbσb

φ
W +σb

√
1−δ2

bW
b , (A1a)

Zs =
δsσs

φ
W +σs

√
1−δ2

s W
s , (A1b)

where

δb =
σb�B +ρσs�S

φ
,

δs =
σs�S +ρσb�B

φ
,

and where Wb and Ws are standard Brownian motions that are each independent of W (to verify,
just regard Equation (A1) as a definition of Wb and Ws and check that they have unit standard
deviation per unit of time and are uncorrelated with W ). The martingale property of Wb and its
independence from W imply that

E[Zb
T −Zb

t |Zb
t ,Zs

t ,W
b
t ,WT ≥0]=

δbσb

φ
E[WT −Wt |Zb

t ,Zs
t ,WT ≥0].

Therefore, by iterated expectations,

E[Zb
T −Zb

t |Zb
t ,Zs

t ,WT ≥0]=
δbσb

φ
E[WT −Wt |Zb

t ,Zs
t ,WT ≥0].

Using the fact that the distribution of WT conditional on Zb
t and Zs

t depends only on Wt =�′Zt ,
we have that

E[Zb
T −Zb

t |Zb
t ,Zs

t ,WT ≥0]

is a function of Wt . Likewise,

E[Zs
T −Zs

t |Zb
t ,Zs

t ,WT ≥0]

and these same expectations conditional on WT ≤0 are functions of Wt . It follows that the
equilibrium trading strategies are functions of At .

Now, to prove the proposition, set R1 = {y∈R2 |�′y <−α} and R2 = {y∈R2 |�′y >−α}. Define
πb(y)=B(ξ1)+�B1R2 (y) and πs (y)=S(ξ1)+�S1R2 (y). For t≤T , set

pb(t,y)=e−r(T−t)E
[
πb(ZT ) |Zt =y

]
, (A2a)

ps (t,y)=e−r(T−t)E
[
πs (ZT ) |Zt =y

]
. (A2b)

1419

 at :: on Septem
ber 29, 2015

http://rfs.oxfordjournals.org/
D

ow
nloaded from

 



The Review of Financial Studies / v 28 n 5 2015

We will first show that the trading strategy defined by Equation (7) is optimal for the informed
trader, when prices are defined by Equation (A2). For each y∈R2, define J (T ,y,ξ1)=1R2 (y)�′y
and J (T ,y,ξ2)=−1R1 (y)�′y. Note that J (T ,y,ξi )>0 for y∈Rj and j �= i. Also, for y∈R1∪R2,

∂J (T ,y,ξi )

∂yb
=πb(y)−B(ξi ), (A3a)

∂J (T ,y,ξi )

∂ys
=πs (y)−S(ξi ). (A3b)

For t <T , set J (t,y,ξi )=E[J (T ,ZT ,ξi ) |Zt =y]. Note that the definition of J (T ,y,ξi ) for y /∈
R1∪R2 is irrelevant for the definition of J (t,y,ξi ), because ZT ∈R1∪R2 with probability one. We
can interchange differentiation and expectation and use Equation (A3) to compute the gradient of
J (t,·,ξi ) as

∂J (t,y,ξi )

∂yb
=E[πb(ZT ) |Zt =y]−B(ξi ), (A4a)

∂J (t,y,ξi )

∂ys
=E[πs (ZT ) |Zt =y]−S(ξi ). (A4b)

Also, note that, because J (t,Zt ,ξ̃ ) is by definition an F–martingale, its drift on the filtration F is
zero. This yields

Jt +
1

2

∂2J

∂zb
σ 2

b +
1

2

∂2J

∂zs
σ 2

s +
∂2J

∂zb∂zs
ρσbσs =0. (A5)

Consider an arbitrary strategy θ for the informed trader and apply Itô’s formula to J (t,Yt ,ξ̃ ).
Equation (A5) states that the second-order terms in dJ cancel with Jt dt , leaving

dJ (t,Yt ,ξ̃ )=
∂J (t,Yt ,ξ̃ )

∂yb
dY b

t +
∂J (t,Yt ,ξ̃ )

∂ys
dY s

t .

Equations (A2) and (A4) imply

∂J (t,Yt ,ξ̃ )

∂yb
=er(T−t)pb(t,Yt )−B(ξ̃ ),

∂J (t,Yt ,ξ̃ )

∂ys
=er(T−t)ps (t,Yt )−S(ξ̃ ).

Therefore,

J (T ,YT ,ξ̃ )=J (0,0,x̃)+
∫ T

0
dJ (t,Yt ,x̃)

=J (0,0,ξ̃ )+
∫ T

0

(
er(T−t)pb(t,Yt )−B(ξ̃ )

)
dY b

t

+
∫ T

0

(
er(T−t)ps (t,Yt )−S(ξ̃ )

)
dY s

t .

Recalling that dY =θ dt +dZ, we see that the negative of the profit in expression (3) constitutes
part of the right-hand side of this equation. Rearranging, we see that the expected profit (3) equals

E
[
J (0,0,ξ̃ )−J (T ,YT ,ξ̃ )

]

+E
[∫ T

0

(
er(T−t)pb(t,Yt )−B(ξ̃ )

)
dZb

t +
∫ T

0

(
er(T−t)ps (t,Yt )−S(ξ̃ )

)
dZs

t

]
.

The stochastic integrals in this expression have zero expectations, due to the “no doubling
strategies” condition. Moreover, J (T ,YT ,ξ̃ )≥0, so the expected profit is bounded above by

1420

 at :: on Septem
ber 29, 2015

http://rfs.oxfordjournals.org/
D

ow
nloaded from

 



The Informational Role of Stock and Bond Volume

E[J (0,0,ξ̃ )], with the bound being achieved if and only if J (T ,YT ,ξ̃ )=0 with probability 1.
Thus, a trading strategy is optimal if and only if it implies YT ∈Ri whenever ξ̃ =ξi .

When prices are given by Equation (A2), the optimality of the trading strategy defined by
Equation (7) is now implied by the following, the proof of which is momentarily deferred.

Lemma 1. The following are true for the trading strategy q defined by Equation (7):

(A) There is a unique strong solution to the stochastic differential equation (SDE)

dYt =q(t,Yt ,ξ̃ )dt +dZt (A6)

on the filtration F with initial condition Y0 =0.

(B) The solution Y to the SDE (A6) satisfies, with probability 1, ξ̃ =ξi⇔YT ∈Ri .

(C) The solution Y to the SDE (A6) is a Brownian motion on its own filtration with zero drift
and instantaneous covariance matrix � (that is, it has the same law as Z).

Now, we need to show that the prices P b
t

def
= pb(t,Yt ) and P s

t

def
= ps (t,Yt ) with pb and ps defined

by Equation (A2) satisfy Equation (2) and that Equation (6) holds, when Equation (7) defines the
trading strategy. In the more formal notation of this appendix, the expression πt appearing in
Equations (2) and (6) is given by P(ξ̃ =ξ2 |Gt ). From Part B of the lemma,

P(ξ̃ =ξ2 |Gt )=P(YT ∈R2 |Gt ).

Part C of the lemma implies Y is Markov on (Ω,G,P), so

P(YT ∈R2 |Gt )=P(YT ∈R2 |Yt ).

The definition (A2) and Part C of the lemma imply

pb(t,y)=B(ξ1)+�BP(ZT ∈R2 |Zt =y)

=B(ξ1)+�BP(YT ∈R2 |Yt =y),

Therefore,
P b

t =B(ξ1)+�BP(YT ∈R2 |Yt ).

By the same reasoning,
P s

t =S(ξ1)+�SP(YT ∈R2 |Yt ).

This verifies Equation (2). Finally, the definition of R2 and Part C of the lemma imply

P(YT ∈R2 |Yt )=N

(
α+�′Yt

φ
√

T −t

)
,

which verifies Equation (6).
To establish the remaining claims in the proposition, first apply Itô’s formula to Equation (2) to

obtain
dPt = rPt dt +e−r(T−t)�dπt .

Using Equation (6) for πt and Itô’s formula again yields

dπt =
1

φ
√

T −t
n

(
α+�′Yt

φ
√

(T − t)

)
�′dYt .

Combining these produces dPt = rPt dt +t dYt with t =κ(t,α+�′Yt )��′ as claimed. Part C
of the lemma shows that the aggregate order process Y is a Brownian motion with zero drift and

1421

 at :: on Septem
ber 29, 2015

http://rfs.oxfordjournals.org/
D

ow
nloaded from

 



The Review of Financial Studies / v 28 n 5 2015

instantaneous covariance matrix � given the market makers’information. Part B of the lemma states
that∪i{ω | ξ̃ (ω)=ξi ,YT (ω)∈Ri} is a set of states of the world that has probability 1. Consider a state
ω such that ξ̃ (ω)=ξ1 and YT (ω)∈R1. Then−[α+�′YT (ω)]>0. Set ε(ω)=−[α+�′YT (ω)]/2>0.
By the path continuity of Y , there exists τ (ω)<T such that �′Yt (ω)−�′YT (ω)<ε(ω) for all
t >τ (ω), so

α+�′Yt (ω)+ε(ω)=α+�′YT (ω)+ε(ω)+[�′Yt (ω)−�′YT (ω)]

<α+�′YT (ω)+2ε(ω)

=0

for t >τ (ω). Therefore, α+�′Yt (ω)<−ε(ω) for t >τ (ω). For such t , Equation (6) for πt implies

πt (ω)=N

(
α+�′Yt (ω)

φ
√

T − t

)
<N

( −ε(ω)

φ
√

T −t

)
.

The right-hand side of this inequality converges to zero as t→T , so πt (ω)→0. A similar argument
shows that πt (ω)→1 for each ω such that x̃(ω)=ξ2 and YT (ω)∈R2. It now follows immediately
from Equation (2) that there is convergence to strong-form efficiency as claimed in the proposition.

Proof. To put the stochastic differential equation (A6) in a more standard form, define the process
Ŷt =(Yt ,ξ̃ ) with random initial condition Ŷ0 = (0,ξ̃ ), and augment the SDE (A6) with the equation
dξ̃ =0. The existence of a unique strong solution Ŷ to this enlarged system follows from Lipschitz
and growth conditions satisfied by q. See Karatzas and Shreve (1988, Theorem 5.2.9).

The uniqueness in distribution of weak solutions of stochastic differential equations (Karatzas
and Shreve, 1988, Theorem 5.3.10) implies that we can demonstrate Properties B and C by
exhibiting a weak solution for which they hold. Let P denote the probability measure. Let 1A

denote the zero-one indicator function of a set A. Directly from the definitions of π0, α, Ri and ξ̃ ,
we have

P(ξ̃ =ξ2)=π0 =N

(
α

φ
√

T

)
=P(ZT ∈R2). (A7)

Define

MT =
1

1−π0

[
1R1 (ZT )1{ξ1}(ξ̃ )

]
+

1

π0

[
1R2 (ZT )1{ξ2}(ξ̃ )

]
.

The P–independence of ZT and ξ̃ and (A7) imply

E[MT ]=
P(ZT ∈R1)P(ξ̃ =ξ1)

1−π0
+

P(ZT ∈R2)P(ξ̃ =ξ2)

π0
=1.

Define a new measure Q on (Ω,FT ) by dQ/dP=MT . Define Hi (t,y)=P(ZT ∈Ri |Zt =y) for
i =1,2, and for t≤T , set

Mt =E[MT |Ft ]=
1

1−π0

[
H1(t,Zt )1{ξ1}(ξ̃ )

]
+

1

π0

[
H2(t,Zt )1{ξ2}(ξ̃ )

]
. (A8)

Obviously, only one of the terms on the right-hand side of the definition (A8) is nonzero in any
state of the world. Thus,

dMt

Mt

=
dH1(t,Zt )

H1(t,Zt )
1{ξ1}(ξ̃ )+

dH2(t,Zt )

H2(t,Zt )
1{ξ2}(ξ̃ ). (A9)

From Itô’s formula, and the fact that Hi (t,ZT ) is a P–martingale, we obtain

dHi (t,Zt )=∇Hi (t,Zt )
′dZt , (A10)
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where ∇ denotes the gradient with respect to the Zt argument. Let f (· | t,y) denote the density
function of ZT conditional on Zt =y. Let ∇y denote a gradient with respect to y∈R2. Then,

∇yHi (t,y)=∇y

∫ ∞

−∞

∫ ∞

−∞
1Ri

(z)f (z | t,y)dzbdzs

=
∫ ∞

−∞

∫ ∞

−∞
1Ri

(z)∇yf (z | t,y)dzbdzs

=
1

T −t

∫ ∞

−∞

∫ ∞

−∞
1Ri

(z)�−1(z−y)f (z | t,y)dzbdzs .

It follows that
1

Hi (t,y)
∇yHi (t,y)=

1

T −t
�−1E[ZT −y |Zt =y,ZT ∈Ri ]

=�−1q(t,y,ξi ). (A11)

Thus, Equation (A10) implies

dHt (t,Zt )

Hi (t,Zt )
=q(t,Zt ,ξi )

′�−1 dZt ,

and from Equation (A9) we obtain

dMt

Mt

=q(t,Zt ,ξ̃ )′�−1 dZt .

Therefore, (
dMt

Mt

)
dZ =q(t,Zt ,ξ̃ )dt .

Consequently, by Girsanov’s Theorem, Z∗ defined by Z∗0 =0 and

dZ∗t =−q(t,Zt ,ξ̃ )dt +dZt (A12)

is a Brownian motion (with zero drift and instantaneous covariance matrix �) on the filtration F

relative to Q. Equation (A12) implies that Z is a weak solution of the SDE (A6) relative to the
Brownian motion Z∗ on the filtered probability space (Ω,F,Q). We want to establish Properties
B and C for this weak solution.

Property B is equivalent to the condition that

2∑
i=1

E
[
1Ri

(YT )1{ξi }(ξ̃ )
]

=1.

It holds for the weak solution Z on (Ω,F,Q) iff

2∑
i=1

EQ
[
1Ri

(ZT )1{ξi }(ξ̃ )
]

=1,

where EQ denotes expectation with respect to Q. This is equivalent to

2∑
i=1

E
[
MT 1Ri

(ZT )1{ξi }(ξ̃ )
]

=1.

By the definition of MT ,
2∑

i=1

MT 1Ri
(ZT )1{ξi }(ξ̃ )=MT ,

and E[MT ]=1, so Property B holds.
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It remains to establish Property C for this weak solution, meaning that Z is a Brownian motion
on (Ω,G,Q). Because Z is a Brownian motion on (Ω,G,P), it suffices to show that Q=P when
both are restricted to GT . Because G is left-continuous, it actually suffices to show that Q=P when
both are restricted to Gτ for arbitrary τ <T . This holds if for all t1 < ···<tn≤τ and all Borel B we
have

P((Zt1 ,...,Ztn )∈B)=Q((Zt1 ,...,Ztn )∈B).

The right-hand side of this equals

E[MT 1B (Zt1 ,...,Ztn )]=
1

1−π0
E

[
1R1 (ZT )1{ξ1}(ξ̃ )1B (Zt1 ,...,Ztn )

]

+
1

π0
E

[
1R2 (ZT )1{ξ2}(ξ̃ )1B (Zt1 ,...,Ztn )

]
=E

[
1R1 (ZT )1B (Zt1 ,...,Ztn )

]
+E

[
1R2 (ZT )1B (Zt1 ,...,Ztn )

]
=E

[
1R1∪R2 (ZT )1B (Zt1 ,...,Ztn )

]
=P((Zt1 ,...,Ztn )∈B),

using the P–independence of Z and ξ̃ for the second equality. �

Appendix B. Data

The empirical tests draw data from several databases. Here we detail the sample selection process,
data filters, and methods for linking the databases.

TRACE: TRACE contains transactions data for corporate bonds. We employ several filters to
ensure accuracy of the TRACE data. Following Dick-Nielsen (2009), we first delete any duplicate
observations by identifying same-bond entries with the same intraday message sequence number
(every report in TRACE has a unique message sequence number within a day). Second, we delete
any observations that have been reversed. This involves deleting the reversal report and the original
report that the reversal report references. Third, we delete any original report that has been corrected
later in the trading day.

When calculating bonds returns, we employ several price filters to minimize the effect of price
errors. First, we require that prices satisfy:

|P−med(P,20)|≤5×MAD(P,20)+$1

where P is the transaction price, med(P,20) is the centered rolling median over 20 price
observations, and MAD(P,20) is the median absolute deviation of the price.16 We also require
that the reported price be between $1 and $500, and we delete an observation if its price is not
within 20% of the bond’s median price for that day or is not within 20% of the price from the
previous transaction.17 These filters remove approximately 2.5% of bond trade observations.

FISD: We match bond transactions data from TRACE to bond attributes in FISD using the
bond’s nine-digit CUSIP number.

CRSP: Bonds are initially matched to issuer equity information using the six-digit issuer CUSIP
and the CRSP stocknames file. For any unmatched bonds, we use the issuer CUSIP associated with
the parent ID in FISD to match to CRSP. On some days on which equities trade, bond markets are

16 This is the filter used by Rossi (2009).

17 This is the filter used by Han and Zhou (2008).
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closed or have significantly reduced volumes and numbers of bonds traded, particularly around
holidays. We eliminate these days (about five per year).

TAQ: Issuers identified in CRSP are matched to intraday stock transactions in TAQ each month
using the eight-digit equity CUSIP and the monthly TAQ master files. We use trades and quotes
occurring during the trading day and exclude observations with price or volume values of zero. In
applying the Lee-Ready algorithm, trades are matched to quotes in the same second.
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