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‘We propose and estimate a model of endogenous informed trading that is a hybrid of the PIN
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are needed to identify information asymmetry parameters. Empirical relationships between
parameter estimates and price impacts and between parameter estimates and stochastic
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Information asymmetry is a fundamental concept in economics, but
its estimation is challenging because private information is generally
unobservable. Many proxies for information asymmetry exist including bid/ask
spreads, price impacts, and estimates from structural models. In this paper,
we study the identification of information asymmetry parameters in structural
models. Structural modeling allows the econometrician to capture parameters

Versions of this paper were presented under various titles at the University of Colorado, the SEC, the AFA
Conference, the NYU Stern Microstructure Conference, the University of Chicago Market Microstructure and
High Frequency Data Conference, the ASU Sonoran Winter Finance Conference, the UBC Winter Finance
Conference, the ITAM Finance Conference, and the CityUHK Finance Conference. We thank Itay Goldstein
(the editor); two anonymous referees; Pete Kyle, Rob Engle, Dmitry Livdan, Yajun Wang, and Hengjie Ai; and
seminar participants for helpful comments. We thank Slava Fos for helpful comments and for sharing his data on
trading by Schedule 13D filers. We also thank Richard Swartz for research assistance. Supplementary data can be
found on The Review of Financial Studies Web site. Send correspondence to Kevin Crotty, Jones Graduate School
of Business, Rice University, Houston, TX 77005; telephone: (713) 348-6303. E-mail: kevin.p.crotty @rice.edu.

© The Author(s) 2017. Published by Oxford University Press on behalf of The Society for Financial Studies.
All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
doi:10.1093/rfs/hhx 133 Advance Access publication November 30, 2017

81,02 1990J00 91 UO Jasn AysIanun 801y AQ £28/29%/1122/9/1 € AOBNSqE-0]DIHE/SH/WO00 N0 DIWapEDE//:SA]Y WO PaPEojuMoq



The Review of Financial Studies /v 31 n 6 2018

related to the underlying economic mechanisms such as the probability and
magnitude of private information events or the intensity of liquidity trading.
Demand for plausible measures of information asymmetry is high because
private information plays a key role in so many economic settings. Evidence
of this demand is the large literature in finance and accounting that utilizes the
probability of informed trade (PIN) measure of Easley et al. (1996) to proxy
for information asymmetry.!

Our first contribution is to propose and solve a model of informed trading
in securities markets that shares many features of the PIN model of Easley
et al. (1996) but in which informed trading is endogenous like in Kyle (1985).
We call this a hybrid PIN-Kyle model. In the paper, we study a binary signal
following Easley et al. (1996), but the model can accommodate more general
signal distributions.

An important implication of the model is that order flows alone cannot
identify information asymmetry. The intuition is quite simple. Consider, for
example, a stock for which there is a large amount of private information
and another for which there is only a small amount of private information.
If it is anticipated that private information is more of a concern for the first
stock than for the second, then the first stock will be less liquid, other things
being equal. The lower liquidity will reduce the amount of informed trading,
possibly offsetting the increase in informed trading due to greater private
information. In equilibrium, the amount of informed trading may be the same
in both stocks, despite the difference in information asymmetry. In general, the
distribution of order flows need not reflect the degree of information asymmetry
when liquidity providers react to information asymmetry and informed traders
react to liquidity. Thus, we provide the first theoretical explanation of why
methodologies that use order flows alone to estimate information asymmetry
parameters, like PIN and Adjusted PIN (Duarte and Young, 2009), may not
identify private information.?

Some of those papers assess whether information risk is priced. See, for example, Easley and O’Hara (2004),
Duarte and Young (2009), Mohanram and Rajgopal (2009), Easley, Hvidkjaer, and O’Hara (2002), Easley,
Hvidkjaer, and O’Hara (2010), Akins, Ng, and Verdi (2012), Li et al. (2009), and Hwang et al. (2013). Many
other papers use PIN (and other measures) to capture a firm’s information environment in a variety of applications
ranging from corporate finance (e.g., Chen, Goldstein, and Jiang, 2007, Ferreira and Laux, 2007) to accounting
(e.g., Frankel and Li, 2004, Jayaraman, 2008).

Several papers argue that PIN does not identify private information. Aktas et al. (2007) examine trading around
merger announcements. They show that PIN decreases prior to announcements. In contrast, percentage spreads
and the permanent price impact of trades, measured like in Hasbrouck (1991), rise before announcements,
indicating the presence of information asymmetry. They describe the decline in PIN prior to announcements as
a PIN anomaly. Akay et al. (2012) show that PIN is higher in the Treasury-bill market than it is in markets for
individual stocks. Given that it is very doubtful that informed trading in Treasury bills is a frequent occurrence,
this is additional evidence that PIN is not measuring information asymmetry. Benos and Jochec (2007) find
that PIN is higher following earnings announcements, contrary to their assumption that information asymmetry
should be higher before announcements. Duarte, Hu, and Young (2017) examine opportunistic insider trades.
They estimate the parameters of the PIN model and then compute the conditional probability of an information
event each day. They show that the conditional probability rises prior to opportunistic insider trades but stays
elevated for a number of days following announcements. They argue that high turnover is misidentified as private
information by the PIN model.
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Our second contribution is to develop novel estimates characterizing the
information environment in financial markets. We structurally estimate our
theoretical model for a panel of stocks and provide several validation checks
that the estimated parameters are plausibly related to information asymmetry.
First, reduced-form estimates of price impact are increasing in our structural
estimates of the probability and magnitude of information events, as implied
by theory. Second, the model implies that the magnitude of price changes is
proportional to Kyle’s lambda, which depends on order flows and parameters
of the model. Empirically, volatility over the latter part of a trading day is
increasing in the conditional model-implied lambda, where the conditioning is
based on cumulative order flows over the first part of the day and our estimated
parameters. This phenomenon of stochastic volatility occurs in both the model
and the data.’

To demonstrate potential applications of the estimates, we revisit two settings
in which PIN estimates have been employed. One application of PIN has been
to attempt to capture time-series variation in information asymmetry.* We show
that conditional probabilities of information events calculated using order flows
and our parameter estimates rise on average around earnings announcements
and are higher both pre- and post-announcement for announcements with
larger absolute earnings surprises. Private information is more likely to be
present around such announcements. Conditional probabilities are also elevated
during block accumulations by Schedule 13D filers, which existing information
asymmetry measures fail to detect (Collin-Dufresne and Fos, 2015). These
results indicate that the model does capture time-series variation in information
asymmetry.

The second application illustrates how estimates of the information
asymmetry parameters from our model can be used to augment studies
concerned with cross-sectional differences in the information content of prices.
To do so, we consider the hypothesis of Chen, Goldstein, and Jiang (2007) that
corporate investment is more sensitive to market prices when there is more
private information in prices. Our model allows us to measure the amount
of private information alternatively by the frequency of private information
events, by the magnitude of private information, and by the fraction of total
price movement that is due to private information. We show that corporate
investment is more sensitive to prices when any of these measures is higher.
These measures of private information should prove useful in other settings in

Banerjee and Green (2015) solve a rational expectations model with myopic mean-variance investors in which
investors learn whether other investors are informed. They show that variation over time in the perceived likelihood
of informed trading induces volatility clustering. While their model is quite different from ours, our model also
exhibits volatility clustering. Volatility follows the same pattern as Kyle’s lambda, which varies over time because
of variation in the market’s estimate of whether an information event occurred.

For example, Brown, Hillegeist, and Lo (2004, 2009) examine changes in information asymmetry following
voluntary conference calls and earnings surprises, respectively, and Duarte et al. (2008) study the effect of
Regulation FD on PIN and the cost of capital.
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which researchers are interested in capturing distinct facets of the information
environment (e.g., the amount of liquidity trading or the magnitude of private
information).

Related structural models of informed trading include the Adjusted PIN
(APIN) model of Duarte and Young (2009), the Volume-Synchronized PIN
(VPIN) model of Easley, L6pez de Prado, and O’Hara (2012), and the modified
Kyle model of Odders-White and Ready (2008). The APIN model allows
for time variation in liquidity trading (with positively correlated buy and sell
intensities), which provides a better fit to the empirical distribution of buys and
sells. The VPIN model estimates buys and sells within a given time interval by
assigning a fraction of total volume to buys and the remaining fraction to sells
based on standardized price changes during the time interval.> Odders-White
and Ready (2008; OWR) analyze a Kyle model in which the probability of an
information event is less than 1, as it is in our model. However, they analyze a
single-period model, whereas we study a dynamic model. Unlike our dynamic
model in which prices equal conditional expectations, market makers in their
model only match unconditional means of prices to unconditional means of
asset values.®

Our estimate of the probability of an information event is not positively
correlated in the cross-section with estimates from the other models. The
divergence between the estimates is not surprising, because the models have
different assumptions/implications regarding what data is required to identify
the probability of an information event.” We also calculate a composite measure
of information asymmetry in our model: the expected average lambda. This
measure incorporates both the probability and the magnitude of information
events, as well as the amount of liquidity trading. Unlike the probability of an
information event, the expected average lambda from our model is positively
correlated with similar measures from other models (PIN, APIN, VPIN, and the
OWR lambda). Each of these measures should be increasing in the probability
of an information event, so it is surprising that they are all positively correlated,
given the lack of correlation of the ‘probability of an information event’
estimates. However, the measures are also decreasing in the amount of liquidity
trading, and we present evidence in Section 4 that the measurement of liquidity

Easley, Lopez de Prado, and O’Hara (2011) claim that VPIN predicted the “flash crash” of May 6, 2010. This
claim and some other claims regarding VPIN are challenged by Andersen and Bondarenko (2014b). See also
Easley, Lopez de Prado, and O’Hara (2014) and Andersen and Bondarenko (2014a).

In a single-period model, because of the net order having a mixture distribution, the conditional expectation of
the asset value given the net order is not a linear function of the net order. We solve our model by exploiting
the local linearity of continuous time. Odders-White and Ready (2008) instead deviate from the usual Kyle
model hypothesis that prices equal conditional expected values and instead find a linear pricing rule for which
unconditional expected market maker profits are zero. Such a pricing rule would require commitment by market
makers, because it is not consistent with ex post optimization by market makers.

While the OWR model uses both prices and order flows for estimation, their model shares the feature of the
PIN model that the unconditional order flow distribution depends on the information asymmetry parameters and
hence could be used to identify information asymmetry. This is inconsistent with our theoretical result that both
prices and order flows are necessary to identify alpha when a strategic trader trades endogenously.
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trading is quite positively correlated across models, resulting in the positive
correlation of the composite measures. Of course, applications of the measures
generally assume that they are correlated with private information, not just
inversely correlated with liquidity trading.

Theory predicts that orders have larger price impacts and quoted spreads
when information asymmetry is more severe.® This is true in both the Kyle
(1985) model, on which the hybrid and OWR models are based, and the
Glosten and Milgrom (1985) model, on which PIN models are based. To test
this implication of theory, we examine reduced-form price impacts for our
sample as well as quoted spreads. Empirically, expected average lambda from
the hybrid model is positively correlated with price impacts and quoted spreads
both in the time series and cross-sectionally. While the same is also true for
PIN, APIN, VPIN, and the OWR lambda, expected average lambda has a higher
correlation with price impacts and spreads in the time series than do the other
composite measures. Expected average lambda also adds explanatory power
relative to the other measures in cross-sectional regressions of price impacts or
quoted spreads on the composite measures.

Other related theoretical work includes Rossi and Tinn (2010), Foster and
Viswanathan (1995), Chakraborty and Yilmaz (2004), Goldstein and Guembel
(2008), Banerjee and Breon-Drish (2017), and Wang and Yang (2017). Rossi
and Tinn solve a two-period Kyle model in which there are two large traders, one
of whom is certainly informed and one of whom may or may not be informed.
In their model, unlike ours, there are always information events. Foster and
Viswanathan (1995) consider a series of single-period Kyle models in which
traders choose in each period whether to pay a fee to become informed. There
may be periods in which there are no informed traders. However, in their model,
it is always common knowledge how many traders choose to become informed,
S0, in contrast to our model, there is no learning from orders about whether
informed traders are present.

Chakraborty and Yilmaz (2004) and Goldstein and Guembel (2008) study
discrete-time Kyle models in which there may or may not be an information
event. The main result in Chakraborty and Yilmaz (2004) is that the informed
trader will manipulate (sometimes buying when she has bad information and/or
selling when she has good information) if the horizon is sufficiently long.
The primary difference between their model and ours is that they assume
that the liquidity trade distribution has finite support, so market makers may
incorrectly rule out a type of trader if the horizon is sufficiently long. In contrast,
market makers in our model can never rule out any type of the informed
trader until the end of the model, so it does not strictly pay for a low type

There seems to be general agreement that at least a portion of the price impact of trades is due to information
asymmetry. Glosten and Harris (1988), Hasbrouck (1988), and Hasbrouck (1991) estimate models of trades and
price changes in which both information asymmetry and inventory control motives are accommodated, and all
three papers conclude that information asymmetry is important.
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to pretend to be a high type or vice versa. The primary focus of Goldstein
and Guembel (2008) concerns the incentives for an uninformed strategic trader
to manipulate if information in financial markets feeds back into managers’
investment decisions. In their benchmark equilibrium with no feedback, the
uninformed speculator behaves as a contrarian but does not manipulate, which
is the case in our equilibrium.

Banerjee and Breon-Drish (2017) and Wang and Yang (2017) study
continuous-time Kyle models (specifically, the model of Back and Baruch
(2004) in which there is a random announcement date) in which an informed
trader may not be present. Banerjee and Breon-Drish study the information
acquisition decision, treating it as a real option. In one version of their model,
the timing of information acquisition is publicly observed. In that version,
the market is infinitely deep before information is acquired, and the model is
essentially the same as in Back and Baruch after information is acquired. In
a second version of their model, the timing of information acquisition is not
publicly observed, and the market tries to learn from orders whether information
has been acquired. For that version, they establish a nonexistence result: In the
class of pricing rules they consider, there is no equilibrium. Wang and Yang
also study the Back-Baruch version of the Kyle model. In their model, nature
chooses at date 0 whether there is an information event (and all information
events are “good news” events). Unlike in our model or the model of Banerjee
and Breon-Drish, the strategic trader is not present in their model when there is
no information event.’ They also show the nonexistence of equilibria (though
they have an existence result for a second version of their model in which the
market maker is a monopolist).

1. The Hybrid Model

The hybrid model includes two important features of PIN models—a
probability less than 1 of an information event and a binary asset value
conditional on an information event—and it also includes an optimizing
(possibly) informed trader, like in the Kyle (1985) model. Denote the time
horizon for trading by [0, 1]. Assume there is a single risk-neutral strategic
trader. Assume this trader receives a signal S € {L, H} at time 0 with probability
o, where L<0<H.' Let p; and py=1—p; denote the probabilities of
low and high signals, respectively, conditional on an information event. With
probability 1 —c, there is no information event, and the trader also knows when
this happens. Let & denote an indicator for whether an information event has
occurred (£ =1 if yes and £ =0 if no). In addition to the private information,
public information can also arrive during the course of trading, represented

We call the strategic trader when there is no information event a “contrarian trader.” See Section 1.2 for a
discussion.

Internet Appendix A extends the model to general signal distributions.
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by a martingale V. The possible private information—whether there was an
information event and, if so, whether the signal was low or high—becomes
public information after the close of trading at date 1, producing an asset value
of Vi+£&S. Without loss of generality, we take the signal S to have a zero
mean. We can always do this by taking the signal mean to be part of the public
information V.

In addition to the strategic trades, there are liquidity trades represented by
a Brownian motion Z with zero drift and instantaneous standard deviation o.
Let X, denote the number of shares held by the strategic trader at date ¢ (taking
Xo=0 without loss of generality), and set ¥, =X, +Z,. The processes Y and V
are observed by market makers. Denote the information of market makers at
date t by F"".

One requirement for equilibrium in this model is that the price equal the
expected value of the asset conditional on the market makers’ information and
given the trading strategy of the strategic trader:

P=E[Vi+£S|F " ]=V,+E[¢S|F"]. (1)

We will show that there is an equilibrium in which P, =V, + p(z, Y;) for afunction
p. This means that the expected value of £S conditional on market makers’
information depends only on cumulative orders Y; and not on the entire history
of orders.

The other requirement for equilibrium is that the strategic trades are optimal.
Let 6, denote the trading rate of the strategic trader (i.e., d X, =6,dt). The process
0 has to be adapted to the information possessed by the strategic trader, which is
V, &S, and the history of Z (in equilibrium, the price reveals Z to the informed
trader). The strategic trader chooses the rate to maximize

1 1
Ef [V1+%‘S—P,]9zdt=E/ [£S— p(t, Y)16,dt, @)
0 0

with the function p being regarded by the informed trader as exogenous. In the
optimization, we assume that the strategic trader is constrained to satisfy the
“no doubling strategies” condition introduced in Back (1992), meaning that the
strategy must be such that

1
E/ p(t,Y)*dt < o0
0

with probability 1.

Let N denote the standard normal distribution function, and let n denote
the standard normal density function. Set y; =o N~!(ap;) and yy=o N~!(1—
apy). This means that the probability mass in the lower tail (—oo,y;) of
the distribution of cumulative liquidity trades Z; equals apy, which is the
unconditional probability of bad news. Likewise, the probability mass in

2283

81,02 1990J00 91 UO Jasn AysIanun 801y AQ £28/29%/1122/9/1 € AOBNSqE-0]DIHE/SH/WO00 N0 DIWapEDE//:SA]Y WO PaPEojuMoq



The Review of Financial Studies /v 31 n 6 2018

the upper tail (yg,00) of the distribution of Z; equals appy, which is the
unconditional probability of good news. Set

ElZ\—-Z/Z,=y,Z,<y.] ifs=L,
q(t,y,8)=1E[Z=Z,|Z;=y,yL <Z i <yn] ifs=0, 3)
ElZ1-Z/|Z;=y,Z, > yy] ifs=H.

From the standard formula for the mean of a truncated normal, we obtain the
following more explicit formula for g:

yL=y yL=y oo
_n(oh)/N(oh) ifs=L,
yL=y YH =Y YH=Y yL=y
0,55 _ [n(afﬂ>_n(afﬂ)]/[N(ah)_N(afﬂﬂ @)
O A/ 1—t¢ ifS=0,
(2N (2) o=t
The equilibrium described in Theorem 1 below can be shown to be the unique

equilibrium in a certain broad class, following Back (1992). The proof of
Theorem 1 is given in Appendix A.'!

Theorem 1. There is an equilibrium in which the trading rate of the strategic
trader is
_q(t.Y,.£)
1—t

Given market makers’ information at any date 7, the conditional probability

6, ®)

of an information event with a low signal is N(;i/—:%) and the conditional

probability of an information event with a high signal is N(:"i) The

V11—t
equilibrium asset price is P,=V;+ p(t,Y;), where the pricing function p is
given by

yL—Yy Y—YH
t,y)=L-N| ——— |+H N| ——— ). 6
pan=roN( 2l Yo (222 ) ©

In this equilibrium, the process Y is a martingale given market makers’
information and has the same unconditional distribution as does the liquidity
trade process Z; that is, it is a Brownian motion with zero drift and standard
deviation o.

The last statement of the theorem implies that the distribution of order flows
in the model does not depend on the information asymmetry parameters o,

The proof is based on a generalization of the Brownian bridge feature of the continuous-time Kyle model
established in Back (1992). Whereas a Brownian bridge is a Brownian motion conditioned to end at a particular
point, in this model (with a discrete rather than continuous distribution of the asset value) we encounter a Brownian
motion conditioned only to end in a particular interval. The generalization of the Brownian bridge is established
as a lemma in Appendix A.
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Figure 1
The equilibrium price V; + p(t,Y;) as a function of the order imbalance Y;
The parameter values are t=0.5, V; =50, H=10, L=—10,0=1,and pg=p; =1/2.

H, and L. Thus, if the model is correct, it is impossible to estimate those
parameters using order flows alone. In general, the theorem suggests that it
may be difficult to identify information asymmetry parameters using order
flows alone, as discussed in the Introduction and Section 1.1. When we estimate
the hybrid model, we use both order flows and returns, in contrast to related
models that only use order flows.

Empirically, we test the relationship between « and price impacts of trades.
Figure 1 plots the equilibrium price as a function of Y; for two different values
of «. It shows that the price is more sensitive to orders when « is larger. To
investigate further how the sensitivity of prices to orders depends on « in the
hybrid model, we calculate the price sensitivity—that is, we calculate Kyle’s
lambda.

Theorem 2. In the equilibrium of Theorem 1, the asset price evolves as d P, =
dV,+A(t,Y,)dY,;, where Kyle’s lambda is

L yL—y ) H ( Y —Y )
M, y)=— ‘n + ‘n . 7
== (wl_t o1=1  \ovI=t @
Furthermore, Kyle’s lambda A(z,Y;) is a martingale with respect to market
makers’ information on the time interval [0, 1).

Kyle’s lambda is a stochastic process in our model, but we can easily relate the
expected average lambda to «. Because lambda is a martingale, the expected
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Figure 2
Expected average lambda (8) as a function of «
The parameter values are 0 =1, p; =py=1/2,and L=—H.

average lambda is A(0,0). Substitute the definitions of y; and yy in (7) to
compute12

L H
A(O,O):—;n(N_l(apL))+;n(N_l(l—apH)). (8)

Figure 2 plots the expected average lambda as a function of « for two
values of H, taking L =— H. Doubling the signal magnitudes doubles lambda.
Furthermore, the expected average lambda is increasing in «.

1.1 Nonidentifiability using order flows alone

A key result of Theorem 1 is that the aggregate order imbalance Y; has the
same distribution as the liquidity trades Z; and is invariant with respect to the
information asymmetry parameters.'? Further insight into this identification
issue can be gained by noting that the unconditional distribution of the order
imbalance in our model is a mixture of three conditional distributions. With

If information events occur for sure (e=1), then A(0,0)=(H — L)n(0)/o. This is analogous to the result of Kyle
(1985) that lambda is the ratio of the signal standard deviation to the standard deviation of liquidity trading.
Of course, it is not quite the same as Kyle’s formula, because we have a binary signal distribution, whereas the
distribution is normal in Kyle (1985).

This result on the nonidentifiability of information asymmetry parameters from order flows does not depend on
the binary signal assumption. Internet Appendix A presents the model with a general signal distribution. The
unconditional order flow distribution is the same as the distribution of liquidity order flows in the general model
as well.
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10

Intensity ¢ of Informed Trade

O L
10 45 50 55 60
Price

Figure 3
The equilibrium informed trading rate 6; as a function of the price V; +p(t,Y;)
The parameter values are r=0.5, £§S=H, V; =50, H=10, L=—10,0=1, and py=py =1/2.

probability apy, Y} is drawn from the distribution conditional on a low signal;
with probability apy, Y is drawn from the distribution conditional on a
high signal; and with probability 1 —«, Y is drawn from the distribution
conditional on no information event. The first two distributions have nonzero
means—there is an excess of sells over buys in the first and an excess of
buys over sells in the second. One might conjecture that changing «—thereby
changing the likelihood of drawing from the first two distributions—will alter
the unconditional distribution of Y;. If so, then one could perhaps identify «
from the distribution of Y;. In other models with a potential information event,
it is indeed true that changing «, holding other parameters constant, alters the
unconditional distribution of the order imbalance. However, it is not true in our
model, because the distribution of informed trades in our model endogenously
depends on « due to liquidity depending on «. With a larger alpha, the market
is less liquid (see the comparative statics in Figure 2) and the informed trader
trades less aggressively. Furthermore, with endogenous informed orders, the
arrival rate of informed orders depends on prior price changes as shown in
Figure 3, which is not the case in other models with a potential information
event. In particular, when prices have moved in the direction of the news,
informed orders slow down, and, when prices have moved in the opposite
direction, informed orders speed up. Figure 3 shows that these changes in
intensity depend on the ex ante probability « of an information event. Thus, the
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Information Event with Low Signal

— a=01]]
== a=05

20 — a=0.1]]
== a=05

95 Information Event with High Signal
N T T T

Figure 4

The conditional density function of the net order flow Y

The density is conditional on a low signal, no information event, or a high signal. The parameter values are o =1
and pp=py=1/2.

distributions over which we are mixing change when the mixture probabilities
change, leaving the unconditional distribution of Y} invariant with respect to .

The change in the conditional distributions is illustrated in Figure 4. The
top and bottom panels of Figure 4 show that the strategic trader trades more
aggressively when an information event occurs if an information event is less
likely (¢=0.1 versus a=0.5). The unconditional distribution of Y; is standard
normal for both «=0.1 and «=0.5 in Figure 4, so we cannot hope to use the
unconditional distribution to recover «.

Of course, identifying the information asymmetry parameters from the
distribution of order imbalances is a very different issue from using order
imbalances to update the probability of an information event in a particular
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instance of the model. Conditional on knowledge of the parameters, the order
imbalance does help in estimating whether an information event occurred in a
particular instance of the model; in fact, the market makers in the model update
their beliefs regarding the occurrence of an information event based on the
order imbalance. So, we can compute

prob(info event| Y, parameters),

and this probability does depend on the information asymmetry parameters.
We could use this to identify the information asymmetry parameters if we had
data on order imbalances and data on whether information events occurred. Of
course, we generally do not have data of the latter type. Theorem 1 shows that
the likelihood function of the information asymmetry parameters given only
data on order imbalances is a constant function of those parameters; hence, the
order imbalances alone cannot identify them.

In our empirical work, we estimate the model parameters using prices
and order flows. Armed with these parameter estimates and order flow
observations, we can compute conditional probabilities of an information event.
We examine their time-series properties around earnings announcements and
around Schedule 13D filer trades in Section 3.1.

1.2 The contrarian trader assumption

One way in which our model departs from related models like the PIN model is
that the strategic trader is present in our model even when there is no information
event. When there is no information event, this trader behaves as a contrarian,
selling on price increases and buying on price declines.!* The existence of
such a contrarian trader seems likely if there are always some traders who are
best informed—corporate managers, for example. This would be the case if
information were truly idiosyncratic to the firm. If, on the other hand, there is
an industry or other aggregate components to the information, then it is possible
that no one knows when no one else has information. In that case, the contrarian
trader that we posit would not exist.

In Internet Appendix B, we solve a variant of the PIN model in which
contrarian traders arrive at the market when there is no information event. The
contrarian traders condition their trading direction on the prevailing bid and ask
quotes and the intrinsic value of the asset. The distribution of order imbalances
in that model is shown in Figure 5 for three different values of « (the probability
of an information event). The figure shows that the distribution depends on
o; thus, order imbalances can be used to identify information asymmetry in

We assume the existence of such a trader because it makes the model more tractable. Odders-White and Ready
(2008) describe the trader as also being present in their model when there is no information event, but, because
the trader has no opportunity to react to price changes in their one-period model, the trader optimally chooses a
zero trade in the absence of an information event. Goldstein and Guembel (2008) also assume that the uninformed
speculator trades as a contrarian in their benchmark model with no feedback.
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Figure 5

The simulated distribution of order imbalances for a variant of the Easley et al. (1996) model in which
contrarian traders arrive in the event of no information

The model is described in Internet Appendix B. Order imbalance is the number of buys minus number of sells.
The histograms plot 50,000 instances of the model. The parameter values are « € {0.25,0.5,0.75}, p; =0.5, =10,
u=10, L=—1, H=1, and V*=0.

the PIN model even when a contrarian trader is present. Thus, the contrarian
trader assumption is not the main driving force behind our nonidentifiability
result. Instead, the result depends on market makers reacting to information
asymmetry and on strategic traders reacting both to liquidity and to price
changes. That is, order flows depend on market liquidity, which depends on
information asymmetry. This creates an indirect dependence of order flows on
information asymmetry that is countervailing to the direct relation.

2. Estimation of the Model

We estimate the hybrid model using trade and quote data from TAQ for NYSE
firms from 1993 through 2012.'5 We sign trades as buys and sells using the

We require that firms have intraday trading observations for at least 200 days within the year. We also require
firms have the same ticker throughout the year and experience no stock splits.
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Lee and Ready (1991) algorithm: trades above (below) the prevailing quote
midpoint are considered buys (sells). If a trade occurs at the midpoint, then
the trade is classified as a buy (sell) if the trade price is greater (less) than the
previous differing transaction price.'® We sample prices and order imbalances
hourly and at the close and define order imbalances as shares bought less shares
sold (denoted in thousands of shares).

We estimate the model by maximum likelihood, maintaining the standard
assumptions in the literature that each day is a separate realization of the model
and that parameters are constant within each year for each stock. We assume
that the dispersion of the possible signals on each day i is proportional to
the observed opening price on day i, P;y. Specifically, we assume that, for
each firm-year, there is a parameter « such that the low signal value each day
is L=—2ppk P;p and the high signal value is H =2p« P;. This construction
ensures that the signal has a zero mean and (H — L)/ P;o=2«. Thus, k measures
the signal magnitude. We also assume that the public information process V is
a geometric Brownian motion on each day with a constant volatility 6. The
likelihood function for the hybrid model depends on the signal magnitude
k, the probability o of information events, the probability p; of a negative
signal conditional on an information event, the standard deviation o of liquidity
trading, and the volatility § of public information.

We derive the likelihood function for the model in Appendix B. Dropping
constants, the log-likelihood function £ for an observation period of n days
satisfies

—L=n(k+1)logo +

YfE_'Y-+n(k+1)log8
2 Zl !
20%A P

1 & 182 <& 3
Us Ui+ —+ Uij+=U; , 9
%ZA;, . ;;,z,m (9)

+

where k is the number of intraday observations sampled at regular intervals of
length A. We sample every hour and at the close, so k=6 and A=1/6.5. Y; is
the vector of cumulative order flows for day i. U; is the vector (U;y, ..., U; j+1)
of log pricing differences

P
Uij=log<P—é—p(r,,n,>) (10)

between the observed return and the model’s pricing function. ¥ is a (k+1) x
(k+1) matrix that depends on A as described in Appendix B. We minimize (9)
inw, k, pr,o,and§.

Prior to 2000, quotes are lagged 5 seconds when matched to trades. For the 2000-2006 time period, quotes are
lagged 1 second. From 2007 on, quotes are matched to trades in the same second.
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The private information parameters «, «, and p; enter the likelihood function
via the log pricing errors U;, because the parameters affect the pricing function
p(t,Y;). As can be seen from (9), o, k, and p; are estimated by minimizing a
quadratic function of the log pricing errors. In the model, the pricing errors are
due to public information. In minimizing the quadratic function, the estimation
procedure tries to maximize the fit of the model prices p(z;, Y;;) to the observed
returns and thereby to minimize how much we have torely on public information
to explain the returns.

Figure 6 illustrates how the pricing errors depend on the private information
parameters. For simplicity, Figure 6 treats the case k=0; that is, it only uses
daily order imbalances and returns. The pricing error each day is the difference
between the daily return P;/ Py and the model price p(1,Y;). The price function
p(1,-) is a step function,!” with steps at y; and yy defined in Section 1
as y =0N’1(och) and yH=0N’1(1 —apg). Thus, @ and p;, affect the step
locations. If « is larger, the step locations are closer together. If p; is increased,
both step locations shift to the right. The parameter « determines the height
of the steps. Notice that 0 and o play similar roles in determining the step
locations; either increasing o or decreasing o will spread out the steps. However,
maximizing the likelihood function also involves fitting the order imbalances to
a Brownian motion with standard deviation o . Table 2 (see Section 2.1) shows
that our empirical estimates of o are almost entirely determined by the standard
deviations of order imbalances—Ilikewise, the estimates of § (the standard
deviation of the public information process) are almost entirely determined
by the standard deviations of returns.

Figure 6 depicts simulated data and three different sets of possible estimates
for the parameters o and «. The fit of the price function p(1,Y;) to the daily
returns is shown in the left column. The log pricing errors in all three cases are
shown in the right column. The parameters that were used in the simulation are
shown in the middle row. Of the three sets of parameters shown in the figure, the
parameters in the middle row give the largest value for the likelihood function.
The parameters in the top row produce steps that are too far apart and too small,
generating a price function that is too flat compared to the data. Consequently,
the log pricing errors shown in the top row of the right column are positively
correlated with order imbalances. The parameters in the bottom row produce
steps that are too close together and too large, generating a price function that
is too steep compared to the data. Consequently, the log pricing errors in the
bottom row are negatively correlated with order imbalances.

2.1 Estimates of the hybrid model
Table 1 reports summary statistics of the parameter estimates for the panel of
firm-years (summary statistics by year are plotted in Figure 7 in Section 2.5). To

The price function p(z,-) for r <1 (that is, for intra-day returns) is depicted in Figure 1.
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Returns, order flows, and log pricing differences for various parameters

Simulations of 1,000 instances of the hybrid model. The data-generating parameters are « =0.5, k =0.015, py =
0.5, 0=0.1, §=0.01. Standardized order flows are on the horizontal axis. The left column plots end-of-day
net returns, Py/Py—1, and the pricing function, p(1,Y}). The right column plots log pricing differences, Uy =
In(Py/Py— p(1,Y71)). The pricing function p(1,Y]) depends on the indicated hatted parameters in each panel
caption. Each row plots the pricing function and log pricing differences for different parameter estimates (hatted
values). The vertical lines indicate the thresholds y; /o and yg /o for the true parameters. The first row uses
parameter estimates in which o and « are too low relative to the true parameters. These generate log pricing
differences that are positively correlated with order flows. The second row uses the data-generating parameters.
The log pricing differences are uncorrelated with order flows. The third row uses parameter estimates in which
a and « are too high relative to the true parameters. These generate log pricing differences that are negatively
correlated with order flows.
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Table 1
Hybrid model parameter estimate summary statistics
o K PL o 8

Mean 0.64 0.0068 0.51 0.12 0.0213
SD 0.25 0.0050 0.15 0.11 0.0087
First quartile 0.54 0.0032 0.46 0.05 0.0149
Median 0.68 0.0058 0.50 0.08 0.0197
Third quartile 0.81 0.0095 0.56 0.16 0.0258
N 19,965 19,965 19,965 19,965 19,965

The model is estimated on a stock-year basis for NYSE stocks from 1993 to 2012 using prices and order
imbalances in 6 hourly intraday bins and at the close. The model parameters are « = probability of an information
event, k =signal scale parameter, o =standard deviation of liquidity trading, 5= volatility of public information,
and py, = probability of a negative event.

see which aspects of the data determine the parameter estimates, Table 2 reports
regressions of the parameter estimates on various moments of order flows and
returns. The table also reports variance decompositions. The moments include
correlations of order flows and returns split into two subperiods of the day:
the first 3 hours and the last 3.5 hours. The price function in the model is
nonlinear, so we also include nonlinear measures of the comovement of returns
and order imbalances. Specifically, we include correlations of returns with
squared order imbalances for the two subperiods. We also include the fraction
of the days on which returns and order imbalances are both in the right tails
of their distributions and the fraction in which they are both in their left tails,
defining a tail as a standard deviation away from zero (a zero order imbalance
or a zero rate of return).

The R-squareds and the variance decomposition show that the estimates of
the standard deviation o of order imbalances from the model are almost entirely
determined by the empirical standard deviations of order imbalances. Likewise,
the estimates of the volatility § of the public news process are almost entirely
determined by the standard deviations of returns. The private information
parameters «, o, and py, are naturally more complex.

The moments have little explanatory power for the p; estimates. As shown in
Table 1, the distribution of the p; estimates is fairly tight around 50%, so there is
not too much variation to explain. The x and « estimates are the most interesting.
The magnitude « of private information is fairly well explained by the moments,
with the most important moments being the standard deviation of returns and the
correlations between order imbalances and returns. The variance decomposition
shows that all of the moments except skewness affect the estimated probability
« of information events. The nonlinear specification is important for «. More
than 20% of the R-squared comes from the tail variables.

2.2 Testing whether an information event is always present in the hybrid
model

Our hybrid model relaxes the assumption in Kyle (1985) that an information

event occurs in each instance of the model (in each day in our implementation).
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Table 2
Hybrid model parameter estima tes and moments of order flow and returns

A. Standardized Regression

o K PL o )
sd(OIB) —0.129*** 0.007 —0.089*** 0.986™** —0.000
(=5.57) (0.38) (—6.17) (135.67) (—0.02)
sd(R) 0.155%+* 0.460*** 0.016 —0.007 0.963***
(5.15) (7.89) (1.39) (—1.46) (138.47)
skew(OIB) 0.007 0.003 —0.058*** 0.003 0.006*
(1.02) (0.39) (—6.11) (0.79) (1.69)
skew(R) —0.008 0.009 0.047%+* —0.001 0.005*
(—1.05) (1.51) (4.33) (—0.41) (1.95)
corr(Ry,0IB|) 0.258*** 0.484%* —0.018 0.009 0.039%**
(5.40) (17.25) (—0.80) (1.26) (2.96)
corr(R ,OIB%) —0.039*** —0.018 0.185%** —0.003 —0.008*
(—3.16) (—1.29) (5.73) (—1.12) (—1.92)
corr(R,,0IB,) 0.218%** 0.314%%* —0.034 —0.012** —0.022**
(6.10) (14.92) (—1.26) (—2.14) (-1.97)
corr(Rz,OIB%) —0.049%** —0.028** 0.099*** —0.001 —0.009**
(=5.79) (—2.04) (4.19) (—0.41) (—-2.52)
#right tail OIB & R —0.122%** —0.103*** —0.128*** 0.011* —0.074%**
(—4.17) (—5.59) (—3.86) (1.76) (—5.95)
# left tail OIB & R —0.163%** —0.063%** 0.029 0.005 0.012*
(=17.39) (—6.66) (1.38) (0.65) (1.67)
Constant 2.159%* —0.482%** 3.439%* 0.068*** 0.118%**
(17.04) (—4.53) (60.66) (3.56) (5.39)
Observations 19,965 19,965 19,965 19,965 19,965
Adjusted R? 0.152 0.680 0.040 0.978 0.938
B. Variance Decomposition
a K PL o 8
sd(OIB) 0.125 0.000 0.127 1.000 0.000
sd(R) 0.237 0.636 0.005 0.000 0.997
skew(OIB) 0.000 0.000 0.075 0.000 0.000
skew(R) 0.001 0.000 0.047 0.000 0.000
corr(Ry,0IB}) 0.221 0.240 0.002 0.000 0.001
corr(Rl,OIB%) 0.009 0.001 0.458 0.000 0.000
corr(Ry,0IB)) 0.159 0.101 0.008 0.000 0.000
corr(Rz,OIB%) 0.016 0.002 0.137 0.000 0.000
#right tail OIB & R 0.055 0.012 0.128 0.000 0.002
# left tail OIB & R 0.176 0.008 0.012 0.000 0.000
Observations 19,965 19,965 19,965 19,965 19,965
Adjusted R? 0.152 0.680 0.040 0.978 0.938

The dependent variables are the estimated parameters from the hybrid model. The explanatory variables are
various moments of order flows and returns. The unit of observation is a firm-year. OIB denotes the cumulative
order flow over the full day. OIB; and OIB, are the order flows over the first 3 and last 3.5 hours of the trading
day. Similarly, R is the return over the full day, and R{ and R, are returns over the first 3 and last 3.5 hours of
the trading day. The indicated moments of these variables are calculated across days for each firm-year. # Right
Tail OIB & R is the fraction of days where both OIB >sd(OIB) and R —1 > sd(R). # Left Tail OIB & R is the
fraction of days where both OIB < —sd(OIB) and R — 1 < —sd(R). Panel A reports estimates where all variables
are standardized to have a unit standard deviation. Standard errors are clustered by firm and year. z-statistics are
in parentheses, and statistical significance is represented by * p <0.10, ** p <0.05, and *** p <0.01. Panel B
reports variance decompositions. Each number in panel B represents the fraction of the model’s total partial sum
of squares corresponding to the moment in the row. The sum of each column is thus one.
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A natural question is whether this relaxation is supported in the data. The Kyle
framework is nested in our model by the restriction that o« =1. Accordingly, we
estimate the model with this restriction. The standard likelihood ratio test of
the null that « =1 against the alternative that « € [0, 1] is rejected for 73% of the
firm-years (with a test size of 10%). However, the usual regularity conditions
for the likelihood ratio test require that the restriction not be at the boundary of
the parameter space. To address this issue, we bootstrap the distribution of the
likelihood ratio statistic for a random sample of 100 firm-years like in Duarte
and Young (2009).

Specifically, for a given firm-year, we estimate the restricted model («¢=1)
and then simulate 500 firm-years under the null using the estimated (restricted)
parameters. We then estimate the restricted and unrestricted models for each
simulated firm-year to obtain the distribution of the likelihood ratio under the
null. The 90th percentile of this distribution is the critical value to evaluate the
empirical likelihood ratio. These bootstrapped likelihood ratio tests reject the
restricted Kyle model in favor of the hybrid model for 62 of the 100 randomly
selected firm-years. The data thus supports the conclusion that the probability
of an information event is less than 1.

2.3 Estimated parameters and reduced-form price impacts
The model places structure on the price and order flow data, allowing the
econometrician to identify components of Kyle’s lambda. Of course, one can
estimate a reduced-form price impact as well. As an initial test of whether our
estimates relate to price impact as implied by theory, we test the comparative
statics from Figure 2 that price impacts are increasing in both the probability
and magnitude of information events.

We employ three estimates of the price impact of orders. The first is the
5-minute percent price impact of a given trade k as

2Dy (Myys— My)

5-minute price impact; = i
k

an
where M) is the prevailing quote midpoint for trade k, My,s is the quote
midpoint five minutes after trade k, and Dy equals 1 if trade k is a buy and
—1 if trade k is a sell. Goyenko, Holden, and Trzcinka (2009) use this measure
as one of their high-frequency liquidity benchmarks in a study assessing the
quality of various liquidity measures based on daily data.'® For a given stock-
day, the estimate of the percent price impact is the equal-weighted average
price impact over all trades on that day. We average these daily price impact
estimates for each stock-year.

Holden and Jacobsen (2014) show that liquidity measures such as the percent price impact can be biased when
constructed from monthly TAQ data, so we follow their suggested technique in processing the data.
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Table 3
Panel regressions of price impacts

A. Probability and magnitude of information events

5-minute Cumulative R
price impact impulse response Aintraday

(D 2) (3) 4) 5) (6)

a 0.22%%* 0.09*** 0.17*** 0.06™** 0.23%+* 0.12%+*
(5.15) (4.00) (3.95) (2.93) (4.88) (4.13)

K 0.58%*** 0.35%** 0.42%+* 0.23%** 0.67*** 0.48%**
(16.03) 9.29) (9.86) (6.44) (10.74) (8.27)

Observations 19,965 19,965 19,965 19,965 19,965 19,965

R2 0.591 0.800 0.625 0.829 0.369 0.642
Year FEs Yes Yes Yes Yes Yes Yes
Firm FEs No Yes No Yes No Yes

B. Unconditional signal standard deviation

S-minute Cumulative
price impact impulse response Aintraday
()] 2) 3 (C)) (5) (6)
SD(£S) 0.72%%* 0.50%** 0.54%** 0.34%%* 0.83%** 0.67***
(26.04) (18.11) (13.27) (8.72) (11.64) (12.46)
Observations 19,965 19,965 19,965 19,965 19,965 19,965
R2 0.635 0.823 0.655 0.842 0.438 0.679
Year FEs Yes Yes Yes Yes Yes Yes
Firm FEs No Yes No Yes No Yes

The independent variables are the estimated probability « of an information event, the magnitude « of an
information event (panel A) and the standard deviation of the signal (SD(£ S)) (panel B). The dependent variables
are the 5-minute price impact, the cumulative impulse response estimated following Hasbrouck (1991), and an
estimate of price impact (Aiptraday) USIng a regression of 5-minute returns on the square root of signed volume
following Hasbrouck (2009) and Goyenko, Holden, and Trzcinka (2009). All variables are standardized to have
a unit standard deviation. Standard errors are clustered by firm and year. 7-statistics are in parentheses, and
statistical significance is represented by * p <0.10, ** p <0.05, and *** p <0.01.

We also estimate the cumulative impulse response function (Hasbrouck,
1991), which captures the permanent price impact of an order. The cumulative
impulse response is calculated from a vector autoregression of log price changes
and signed trades. Finally, we estimate another price impact measure (denoted
/):immday) using a regression of 5-minute returns on the square root of signed
volume following Hasbrouck (2009) and Goyenko, Holden, and Trzcinka
(2009). We estimate these for each stock day, taking the median estimate across
days as the stock-year estimate.

The first panel of Table 3 reports panel regressions of the three price impact
measures on the hybrid model parameters that measure private information
(the probability « of an information event and the magnitude « of information
events). Before running the regressions, the price impacts and the structural
parameters are winsorized at 1% and 99% and standardized to have unit
standard deviations. Price impacts are positively related to both o and «.
The coefficients are positive even with the inclusion of firm fixed effects,
indicating that o and « capture within-firm information asymmetry variation
as well.
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A summary measure of the amount of private information is the standard
deviation of the signal £S, denoted SD(£S), which equals

2ic/apr(1=pr). 12)

The second panel of Table 3 shows that the estimated SD(£S) is strongly
positively correlated with the price impact estimates, as expected. Cross-
sectionally, a 1-standard-deviation increase in SD(§ S) is associated with around
three-quarters of a standard deviation increase in 5-minute price impact and
’):immday and about half a standard deviation increase in the cumulative impulse
response measure. Variation in SD(£ S) within firm is positively correlated with
within-firm variation in all three price impact measures.

2.4 Kyle’s lambda and stochastic volatility

In the model, prices evolve as d P,=dV; +A(¢, Y;)dY;. The changing sensitivity
of prices to order flows means that prices exhibit stochastic volatility. In Table 4,
we investigate this implication of the model for simulated and actual data.
Volatility is measured as the absolute return over the last 3.5 hours of the
trading day. We calculate A(¢,Y;) from Equation (7) for each day using the
cumulative order imbalance over the first 3 hours of the day (i.e., t=3/6.5), along
with the estimated parameters. We report predictive regressions of volatility
on A(t,Y)).

The top panel of Table 4 reports results for a simulated panel created by
generating 252 days for each set of parameter estimates. Higher levels of
(¢, Y;) predict higher volatility in the second part of the day. The bottom panel
shows that this phenomenon holds in the actual data as well. Moreover, the
magnitudes are similar across the simulated and actual data controlling for
firm and year fixed effects. Confidence intervals at standard significance levels
overlap across the simulated and actual data. Of course, in the actual data, other
phenomena could lead to stochastic volatility. In the last column, we control
for the prior day’s realized absolute return as well as the absolute cumulative
order imbalance over the first part of the day. A(¢,Y;) continues to predict
volatility, and the magnitude of its coefficient is quite similar to that in the
simulated data.

2.5 Time series of estimates

Figure 7 displays the time series of cross-sectional averages and interquartile
ranges of the parameter estimates. This supplements the summary statistics
given for the panel in Table 1. The average « is almost 70% in the early part of the
sample and falls to about 50% by the end of the sample. This effect starts in 2007,
coincident with the introduction of the NYSE Hybrid Market, which increased
automated electronic execution and increased execution speeds. It is possible
that market changes altered incentives to pursue private information, resulting
in lower « estimates. Hendershott and Moulton (2011) find that prices became
more efficient following the roll-out of the Hybrid Market, which aligns with a
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Table 4
Panel regressions of end-of-day absolute returns
A. Simulated
(e)) (@) 3) (€]
A1, Y1) 122.90*** 101.80%** 50.91%** 50.91%**
[17.63] [15.14] [9.44] [9.44]
Constant 121.30%**
[7.67]
Observations 5,031,180 5,031,180 5,031,180 5,031,180
R2 0.013 0.073 0.157 0.157
Year FEs No Yes Yes Yes
Firm FEs No No Yes Yes
Data Simulated Simulated Simulated Simulated
B. Actual
(€)) (@) 3) (C))
At Y1) 96.28*** 83.81%** 37.76%*%* 48947
[9.80] [7.35] [5.18] [4.90]
Lag abs ret 0.15%**
[0.01]
Abs OIB 7.10%**
[0.37]
Constant 83.91%**
[5.11]
Observations 4,918,667 4,918,667 4,918,667 4,918,667
R? 0.012 0.056 0.114 0.136
Year FEs No Yes Yes Yes
Firm FEs No No Yes Yes
Data Actual Actual Actual Actual

The dependent variable is the absolute return over the last 3.5 hours of the day (expressed in basis points). The
model-implied price impact, A(¢, Y7 ), is defined in Equation (7) and is based on the cumulative order flow over the
first 3 hours of the day. Lag Abs Ret is the absolute daily return from the previous day. Abs OIB is the absolute
value of the cumulative order flow over the first 3 hours of the day. Panel A uses daily data simulated from the
panel of estimated parameters for NYSE firms. Panel B uses the actual daily data. Standard errors are clustered
by firm and year and are reported in brackets. Statistical significance is represented by * p <0.10, ** p <0.05,
and *** p <0.01.

reduced probability of private information events.!® The other components of
private information events are the magnitude « of the signal and the likelihood
pr of abad event. The x estimates initially rise during the late 1990s but exhibita
strong downward trend thereafter. The average p; indicates that the distribution
of information is relatively symmetric between positive and negative events.
We combine these estimates into a single composite measure of information
asymmetry by calculating the expected average lambda from Equation (8).
The estimates of this composite measure indicate that the amount of private

In untabulated results, we find that the decline in « starting in 2007 is more pronounced for larger firms.
Algorithmic traders (including high-frequency traders) disproportionately trade in large stocks, so it is
unsurprising that the increased automation and execution speed of the Hybrid Market affected large firms more
than small firms.
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Figure 7

The annual cross-sectional mean and 25th and 75th percentiles of parameter estimates for the hybrid

model

The model is estimated on a stock-year basis for NYSE stocks from 1993 to 2012 using prices and order
imbalances in six hourly intraday bins and at the close. The mean and the 25th and 75th percentiles are shown.
The model parameters are o= probability of an information event, « = signal scale parameter, o = standard
deviation of liquidity trading, §= volatility of public information, and p; = probability of a negative event.

Mhybrid 18 the expected average lambda A(0,0) based on Equation (8).

information has fallen across the twenty-year sample with the exception of the

late 1990s and the financial crisis.2°

As we will discuss in Section 4.3, the same pattern is seen in reduced-form price impact measures.
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In general, the standard deviation o of order imbalances and the volatility
8 of public information appear to be roughly stationary. Despite the well-
documented rise of high-frequency trading and the associated sharp increase
in trading volume, the volatility of order imbalances has remained fairly stable
over the twenty-year sample. Like private information, public information
volatility also spiked during the financial crisis. This suggests private
information may be proportional to public information rather than a fixed
amount.

3. Applications

We now discuss potential applications of the estimation procedure. A large
literature uses the PIN model, as discussed previously. Broadly speaking, some
of this work relates PIN estimates to times when researchers believe information
events have likely occurred. Other research uses PIN to proxy for information
asymmetry or price informativeness. We discuss examples of how our estimates
might be useful to research of either type.

3.1 Detecting information events

Information asymmetry is generally unobservable, so testing performance of
adverse selection measures is challenging. In this subsection, we study how
the conditional probability of an information event as measured by our model
varies in two settings considered in the literature: earnings announcements and
trading by Schedule 13D filers.

3.1.1 Earnings announcements. Many studies have examined the informa-
tion environment surrounding earnings announcements. Some studies assume
that information asymmetry is higher prior to information events, while others
note that private ability or knowledge to interpret public information may
result in adverse selection following announcements (Kim and Verrecchia,
1997). Several recent papers use conditional estimates based on the PIN
and/or OWR models around earnings announcements (Brennan, Huh, and
Subrahmanyam, 2016) and opportunistic insider trades (Duarte, Hu, and Young,
2017).

As discussed in Section 1.1, one can assess the probability of an information
event if one observes cumulative order flows and knows the underlying
parameters. In particular, Theorem 1 shows that market makers update their
conditional probabilities of an information event, CPIE,, as

N(Z2L ) 4N (2L ) ifr<1,
CPIE,(Y,)= <"m> <f’m> (13)
1Yy <yp)+1(Y1>yg) iftr=1.
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Figure 8

Averages of the end-of-day conditional probability of an information event (CPIE) in event time around
earnings announcements

The CPIE is defined in Equation (13). It is calculated using the estimated parameters and order flows. Dashed
lines indicate the 95% confidence interval.

Armed with our estimates of the parameters, we examine end-of-day
conditional probabilities of an information event, CPIE;, on the days around
earnings announcements. We also calculate conditional probabilities of positive
and negative information events, CPIE* and CPIE~, respectively, which are the
two components of CPIE in (13).

Figure 8 plots the cross-sectional average of model-implied CPIE in event
time around earnings announcements. The average CPIE rises significantly
on day ¢ —1, consistent with early leakage of some information prior to the
announcement. The average CPIE is highest on days ¢ and ¢+ 1, and then falls
over the next week or so. The results suggest that adverse selection may actually
be worse following an earnings announcement rather than before it, as discussed
in Kim and Verrecchia (1997).%!

Pre-announcement information asymmetry is likely higher when a firm
experiences an earnings surprise. To test whether CPIE captures this, we
use data from IBES to calculate standardized unexpected earnings, SUE,

This conclusion is also reached by Krinsky and Lee (1996) using the adverse selection component of bid-ask
spreads and by Brennan, Huh, and Subrahmanyam (2016) using conditional probabilities from the PIN model.
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calculated as
EPSactual,t - EPSmedian forecast,t
9

Py

where EPS edian forecast,r 1S the median analyst forecast in the 90 days prior to the
earnings announcement. We expect there to be more informed trading when
the absolute value of SUE is higher. Moreover, the informed trading should
correspond to the subsequent direction of the earnings surprise. That is, higher
(lower) signed earnings surprises should correspond to higher CPIE* (CPIE™)
preceding announcements. The first three columns of Table 5 show that this is
indeed the case. The average conditional probability of an information event in
the 5 days preceding announcements is 80 bps higher for above median |SUE]
observations relative to below median magnitude surprises. The average CPIE
preceding earnings where the |[SUE] is in the top decile is almost 3% higher
than the average across smaller earnings surprise events. Table 5 shows that
the direction of the surprises also corresponds to positive or negative event
probabilities. Average CPIE* is higher before more positive SUE events, and
average CPIE™ is higher preceding more negative SUE events.

Greater amounts of new information also increase the likelihood that
asymmetrically informed investors can trade advantageously following an
announcement (Kim and Verrecchia, 1997). If this is the case, we expect
larger magnitude |SUE| to be correlated with informed trading in the post-
announcement period. Column 4 of Table 5 confirms that this is the case. In the
5 days following announcements, CPIE is higher for larger magnitude surprises.
Moreover, the differences are larger than those in the pre-announcement
period, again suggesting that there is more informed trading following earnings
announcements than preceding them. The final two columns of Table 5 show
that average CPIE* is higher following more positive surprises, while average
CPIE™ is higher following the most negative surprises.

SUE, =

(14)

3.1.2 Schedule 13D filings. Collin-Dufresne and Fos (2015) examine
whether various measures of adverse selection are higher during periods in
which Schedule 13D filers accumulate ownership positions. Announcement
of these positions generally produces a positive stock price reaction, so these
investors are privately informed. These investors must disclose days on which
they traded over a 60-day period preceding the filing date. Thus, this data
provides the econometrician with a laboratory concerning informed trading.
Collin-Dufresne and Fos (2015) show that measures designed to capture
information asymmetry are actually lower on days when Schedule 13D filers
trade. As they discuss, this could be due to endogenous trading in times of
greater liquidity and due to the use of patient limit orders. These effects arise
in part because of the 13D filers’ ability to control the timing of the private
information revelation. This differs from the pre-earnings announcement
setting where an informed trader’s information is valid only for an exogenous
duration.
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Table 5
Average conditional probabilities and earnings surprises

A. Above/below median absolute or signed surprise

Pre-announcement

Post-announcement

CPIE CPIE* CPIE™ CPIE CPIE* CPIE™
Top half |[SUE| 0.79** 1.52%%*
(2.45) (4.40)
Top half SUE 0.47* 1.45%%*
(1.89) (3.31)
Bottom half SUE 0.60** 2.10%*
(2.24) (6.14)

B. Top/bottom quartile absolute or signed surprise

Pre-announcement

Post-announcement

CPIE CPIE* CPIE™ CPIE CPIE* CPIE™
Top quartile |[SUE| 1.57%** 3.06™*
(4.48) (8.80)
Top quartile SUE 0.73** 2.32%**
(2.40) (5.87)
Bottom quartile SUE 1.15%+* 3.07***
(3.02) (6.32)

C. Top/bottom decile absolute or signed surprise

Pre-announcement Post-announcement

CPIE CPIE* CPIE— CPIE CPIE* CPIE™
Top decile |[SUE| 2.7 4.76%%*
(5.22) (9.38)
Top decile SUE 1.24%%* 3.20%*
(3.63) (6.90)
Bottom decile SUE 1.97%%* 4,117
(3.74) (7.51)

The conditional probability of an information event (CPIE) is defined in Equation (13). CPIE is the sum of the
conditional probabilities of good and bad events, CPIE* and CPIE ™, respectively. The conditional probabilities
are expressed as percentages. The reported estimates are the differences in average conditional probabilities of
information events for the indicated quantile of absolute earnings surprises (|]SUE|) or earnings surprise (SUE)
relative to other observations. Panel A divides the sample into above and below median absolute or signed
surprises. Panel B uses the top and bottom quartiles, and panel C uses the top and bottom deciles. The first three
columns report the incremental averages of CPIE, CPIE*, and CPIE™, respectively, for the 5 days preceding the
earnings announcement. The last three columns report the incremental average conditional probabilities for the 5
days following the earnings announcement. The regressions control for firm and year fixed effects, and standard
errors are clustered by firm and year. #-statistics of the differences are in parentheses, and statistical significance
is represented by * p <0.10, ** p <0.05, and *** p <0.01.

We revisit the Schedule 13D setting to assess whether the conditional
probability of an information event is higher on days when these informed
investors trade. According to our model, there are informed trades on days when
there are information events. So we regard the days on which 13D filers trade as
information event days. Consistent with this, Collin-Dufresne and Fos (2015)
show that days when Schedule 13D filers trade are characterized by significant
market-adjusted returns. 13D filers typically accumulate shares by trading on
occasional days over a period of weeks. Over the 60-day disclosure window,
the probability that a Schedule 13D filer trades on a given day ranges from
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Table 6
Average levels of the CPIE on days when Schedule 13D filers do or do not trade
Days with Days with no
informed trading informed trading Difference
(1 (@) 3
Full disclosure window:
Days [t —60,1—1]
CPIE 69.5 61.7 7.8%%*
(4.86)
Ist half of disclosure window:
Days [r—60,t—31]
CPIE 66.7 61.3 5.3%*
(2.35)
2nd half of disclosure window:
Days [t —30,1—1]
CPIE 71.2 62.0 9.2
(4.94)

The conditional probability of an information event (CPIE) is defined in Equation (13). CPIE is expressed as a
percentage. The sample contains trading days in the 60-day disclosure period prior to a Schedule 13D filing date
for NYSE firms in the sample of Collin-Dufresne and Fos (2015). The first column reports the average CPIE on
days when Schedule 13D filers trade. The second column reports the average CPIE on days when Schedule 13D
filers do not trade. The third column reports the differences between the two types of days. We report the analysis
for two subperiods: the first and second halves of the disclosure period (days [t —60,7 —31] and [t —30,7—1],
respectively). Standard errors are clustered by event. 7-statistics of the differences are in parentheses, and statistical
significance is represented by * p <0.10, ** p <0.05, and *** p <0.01.

around 25% to 50% (Collin-Dufresne and Fos, 2015, figure 1). One potential
reason for trading on particular days is news that causes revisions in estimates
of the value of activism. If activists are better informed than the market about
such valuation revisions, which is quite likely, these events fit our model of
private information.??

Table 6 reports average values of CPIE on days during the 60-day disclosure
window when Schedule 13D filers do or do not trade. Just under two-thirds
of the firm-days with no Schedule 13D trades are identified as being event
days. On the other hand, 70% of the days when Schedule 13D filers do trade
are identified as event days. The increase of 7.8% is statistically significant
and represents about a 13% increase in the conditional probability relative to
non-13D trading days. Thus, despite the fact that trading by Schedule 13D
filers is inversely correlated with the various measures of permanent price
impact commonly used in the literature and employed by Collin-Dufresne
and Fos (2015), we find that the trading by 13D filers is manifested in higher
conditional probabilities of an information event, calculated according to our
model.

Another reason that 13D filers may choose to trade on particular days is that liquidity trading may be time
varying. This reason is proposed by Collin-Dufresne and Fos (2015). We could accommodate that by allowing o
to be time varying, but that extension is beyond the scope of the paper. Our goal here is to show that our current
model, with constant o, is informative about trading by 13D filers.
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We also report average CPIE for two subperiods, the first and second halves
of the disclosure period (days [# —60,r —31] and [t —30,¢ — 1], respectively).
If block accumulation by a 13D filer is detected by other strategic traders, then
both the 13D filer and the other strategic traders should trade aggressively to beat
others to the market (Holden and Subrahmanyam, 1992). This is more likely to
have occurred during the second subperiod, so we expect Schedule 13D filers to
trade more aggressively (use more market orders rather than limit orders) in the
second subperiod. Furthermore, the second subperiod includes the period after
crossing the 5% threshold, after which the 13D must be filed within ten days.
We certainly expect more aggressive trading during that period. As a result
of these considerations, we expect signed order flow to reflect the presence
of informed trade more in the second subperiod than in the first. The second
and third rows of Table 6 show that this is indeed the case. There is a smaller
difference of 5.3% in CPIE over the first 30 days of the block-accumulation
period between Schedule 13D trading days and nontrading days. In the second
half of the disclosure period, however, the average CPIE is 9.2% higher on days
when informed Schedule 13D filers trade than on days they do not.

3.2 Measuring the information content of prices

Some studies use PIN to measure the information content of prices in order
to test various economic theories. Applications in corporate finance include
Chen, Goldstein, and Jiang (2007), Ferreira and Laux (2007), and Bharath,
Pasquariello, and Wu (2009), and applications in accounting include Frankel
and Li (2004), Jayaraman (2008), and Brown and Hillegeist (2007).

Here, we demonstrate how our structural estimates could be used to augment
one such study. Chen, Goldstein, and Jiang (2007) study how corporate
managers learn from prices in making investment decisions. They find that
investment sensitivity to prices (q) is increasing with price informativeness as
proxied by PIN and by 1— R? from an asset pricing model. In Table 7, we
replicate Chen, Goldstein, and Jiang (2007) for our sample. Before running the
regressions, we standardize each information environment variable to have unit
standard deviation. Like in Chen, Goldstein, and Jiang (2007), the coefficient
on g is increasing in PIN (Column 2).

To demonstrate how researchers might employ our methodology in this
setting, we consider two composite measures of the information environment
from the hybrid model. The first is the standard deviation of the signal (SD(£5))
from Equation (12). We also calculate the proportion of the return variance
due to private information, which we term the order-flow component of prices
(OFC):

var(§S) SD(£S)?

var(£S)+var(e’51—2/2)  SD(ESP+e — 1

5)

Columns 4 and 5 of Table 7 show that investment-price sensitivity is increasing
in each of these measures.
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Table 7
Panel regressions of corporate investment
(€Y} (2) 3) (4) (5) (6)
(8.27) 4.67) (7.24) (4.50) (5.33) (3.11)
g xPIN 0.19%**
(2.63)
q X 0PIN 0.00
(0.01)
q % ﬁ —0.29%**
(—2.61)
g xSD(S) 0.28%%*
(3.31)
g x OFC 0.22%*
(2.44)
4 X Qhybrid 0.17%*
(3.91)
4 X Khybrid 0.26%**
(3.43)
4 X Ohybrid —0.19*
(—1.80)
CF 7.55%%* 7.58%** 772K 7747 7.86%** 7.56%**
(5.35) (5.37) (5.45) (5.49) (5.47) (5.43)
RET —0.18 —0.18 —0.19 —0.16 —0.19 —0.19
(~1.52) (~1.49) (—1.62) (—1.48) (—1.64) (—1.64)
INV ASSET 0.56%** 0.52** 0.51%* 0.55%** 0.52** 0.46**
(2.72) (2.57) (2.51) (2.67) (2.53) (2.29)
PIN —0.23%%*
(=2.73)
QaPIN 0.01
(0.11)
£
7 0.31%*
(2.20)
SD(£S) —0.52%**
(—4.04)
OFC —0.16
(—1.38)
@hybrid —(.22%**
(—3.36)
Khybrid —0.40%**
(—3.68)
Ohybrid —0.32
(—1.41)
Adjusted R2 0.745 0.746 0.746 0.747 0.746 0.748
Year FEs Yes Yes Yes Yes Yes Yes
Firm FEs Yes Yes Yes Yes Yes Yes

The dependent variable is capital expenditures. The independent variable ¢ is market-to-book of assets. PIN
is the probability of informed trading from Easley et al. (1996). SD(¢S) is the standard deviation of the signal
&S like in Equation (12). OFC is the proportion of return variance due to private information (the order-flow
component of prices) like in Equation (15). « is the probability of an information event in either the PIN or the
hybrid model. khybrig is the magnitude of an information event and opybyriq is the standard deviation of liquidity
trading from the hybrid model. £/ is the ratio of the liquidity to informed trading intensities from PIN. Each
information environment variable is standardized to have unit standard deviation. CF is firm cash flows. RET is
the cumulative return over the next three years. INV ASSET is the inverse of the book value of assets. Standard
errors are clustered by firm and year. 7-statistics are in parentheses, and statistical significance is represented by

* p<0.10, ** p <0.05, and *** p <0.01.

2307

8102 1990j00 91 UO Jasn Aysioniun 901y Aq 228/29%/1122/9/1€A0BNSe-0]01E/SH/WO0D dNO"dlWapEd.//:SA)Y WOl papeojumod



The Review of Financial Studies /v 31 n 6 2018

One advantage of our estimation procedure relative to PIN is that it allows
us to separately estimate the probability and magnitude of information events.
Investment sensitivity to prices is increasing in each of these components
(Column 6 of Table 7). Thus, when there are more frequent or larger episodes
of private information, investment is more sensitive to prices. A 1-standard-
deviation increase in « (the magnitude of information events) is associated
with about a 25% increase in investment-price sensitivity. A standard deviation
change in o (the probability of an information event) has an effect about two-
thirds as large. The positive effect of & conflicts with results from decomposing
PIN into the probability of an information event and the relative intensity of
liquidity to informed traders (Column 3). An increase in the PIN « does not
lead to increased investment sensitivity to prices.

3.3 Probability and magnitudes of private information

Estimation of the probability and magnitude of information events could
also prove useful in other settings where researchers are interested in the
information environment. For instance, the estimates can provide additional
texture to studies of the effects of information-related regulation such as
insider trading laws, short-selling restrictions, or symmetric access to managers
for financial analysts (e.g., Reg FD in the United States). Separating the
probability and magnitude of information events could be useful in the
analyst literature more broadly. Do analysts turn private information into
public information? If so, one might expect to see lower probabilities of
information events for firms with greater analyst coverage. On the other
hand, analysts may produce private information, which could result in higher
probabilities of information events. Studies interested in how the investor
base affects liquidity could be more nuanced by including both « and «.
Index inclusion affects institutional ownership, so how does index inclusion
affect the information environment? Greater institutional ownership could
result in lower magnitudes of private information if prices are more efficient
with institutional ownership. The accounting literature considers whether
disclosure quality and frequency affect the information environment of firms.
Greater disclosure quality could reduce the magnitude of private information,
and greater disclosure frequency could reduce the probability of private
information events. In all of these cases, studying both « and « could improve
our understanding relative to studying only composite measures of private
information.

4. Comparison to Other Models

In this section, we compare the estimates of our model to those of the three
structural models (PIN, APIN, OWR) and the reduced-form version of PIN
(VPIN) discussed in the Introduction. The estimation procedure for the other
models is detailed in Internet Appendix C.
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Table 8
Correlations of structural parameters from the hybrid and other models

A. Composite measures

Mhybrid PIN AOWR APIN VPIN
)‘hybrid 1.00
PIN 0.35 1.00
LOWR 0.55 0.17 1.00
APIN 0.42 0.58 0.19 1.00
VPIN 0.56 042 0.26 0.48 1.00

B. Probability of an information event

Ohybrid opIN COWR AAPIN VPIN
hybrid 1.00
OpPIN —0.09 1.00 N/A
COWR ~0.09 0.05 1.00 /
QAPIN —0.01 0.25 0.04 1.00
C. Liquidity trading

Ohybrid I ou L VPIN
Ohybrid 1.00
£ 0.57 1.00 N/A
oy 0.92 0.51 1.00
el 0.53 0.83 0.48 1.00

For all models, o= probability of an information event. For the hybrid model, Apybyig is the expected average
lambda 2(0,0) based on Equation (8). PIN, APIN, and VPIN are the probabilities of informed trading estimated
using the methodologies in Easley et al. (1996), Duarte and Young (2009), and Easley, Lépez de Prado, and
O’Hara (2012), respectively. AgwRr is the estimate of Kyle’s lambda from Odders-White and Ready (2008).
Ohybrid and oy, are the standard deviations of liquidity trading from the hybrid and OWR models, respectively.
&/ and (¢ +60n)/u are the ratios of the liquidity to informed trading intensities from the PIN and APIN models,
respectively.

4.1 Correlations of model parameters

Panel A of Table 8 shows the correlations among PIN, APIN, VPIN, lambda
from the OWR model (Aowr), and the expected average lambda from our
model (Anybria) — see Equation (8). All of the correlations are positive. The
largest correlations with Anyprig are those of the OWR lambda and VPIN. This
is perhaps not surprising since each of these estimates uses price changes in
some form. The OWR lambda uses the joint distribution of returns and order
flows, while VPIN signs volume using price changes.

We call PIN, APIN, VPIN, Aowr, and Apgbrig composite measures of
information asymmetry because, with the exception of VPIN, they are functions
of the underlying structural parameters.”> We also examine the correlations of
the structural parameters of the various models. Panel B of Table 8 reports
correlations of the estimated probability of an information event from each
model (except VPIN which does not identify o). The estimates of « for the
hybrid model are negatively correlated with estimates of « from the other

2 We refer to VPIN as reduced form because it does not identify the underlying structural parameters. Rather, it

proxies for PIN by separately estimating the numerator and denominator of PIN (see Internet Appendix C.4).
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models. In each of the other models, the unconditional distribution of order
flow imbalances changes with «, unlike in our model, so the lack of correlation
of the hybrid model o with the other «’s is consistent with the identification
discussion in Section 1.1. The implications of the models for the unconditional
distribution of order flow imbalances are discussed further in Internet
Appendix D.?*

The positive correlation of Anybig With the other composite measures is
somewhat surprising given that the o of the hybrid model is not positively
correlated with the «’s of the other models. The explanation lies in the estimates
of liquidity trading. Equation (8) shows that the expected average lambda is
inversely related to the volatility of liquidity trading. The other measures are
also inversely related to liquidity trading (see Equations (C.2), (C.4), and (C.6)
in the Internet Appendix). Panel C of Table 8 reports correlations of the liquidity
trading parameters of each model. We scale the PIN and APIN liquidity trading
parameters by the estimated u, so the fractions ¢/u and (¢+6n)/u represent
the intensity of liquidity trading relative to informed trading. Note that PIN
and APIN are decreasing in these ratios, respectively. The liquidity trading
parameters are positively correlated across the models. For this reason, the
composite measures are positively correlated despite the lack of correlation of
the estimated alphas.

4.2 Cross-sectional variation in parameters

It is interesting to see how estimates of private information differ in the cross-
section of firms across models. Table 9 reports average values of the estimates
within market capitalization deciles. Across all of the models, composite
measures of information asymmetry decrease in firm size (panel A). For the
hybrid model, the average probability o of an information event decreases in
firm size, whereas the estimates for the other models are exactly the opposite,
increasing in firm size (panel B). Like in the unconditional correlation analysis,
the composite measures seem to behave similarly in the size cross-section due
to similarities in liquidity trading measurement (panel C). Estimates from all
of the models indicate more intense liquidity trading for larger capitalization
stocks. For each of the models other than the hybrid model, the effect of the
more pronounced liquidity trading dominates the modest increases in « as a
function of size, so these composite measures are lower for larger firms as a
result of higher estimated liquidity trading.?

4.3 Relation to price impacts and quoted spreads
In theory, price impacts and quoted spreads should be larger when information
asymmetry is higher. This is shown in Section 1 for price impacts in the hybrid

Venter and de Jongh (2006), Duarte and Young (2009), Gan, Wei, and Johnstone (2014), and Duarte, Hu, and
Young (2017) all show that the PIN model fails to fit the empirical joint distribution of buy and sell orders.

The OWR lambda is also a function of its estimated magnitude of private information o;. For both the hybrid
model and the OWR model, the estimated magnitude of private information is also decreasing in size.
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Table 9
Average values of parameter estimates within market capitalization deciles

A. Composite measures

Ahybrid PIN AOWR APIN VPIN
1 (Small) 0.200 0.18 0.139 0.15 0.28
2 0.144 0.15 0.089 0.13 0.27
3 0.111 0.14 0.068 0.12 0.25
4 0.085 0.13 0.058 0.12 0.24
5 0.066 0.13 0.048 0.11 0.23
6 0.052 0.12 0.040 0.10 0.23
7 0.042 0.12 0.034 0.10 0.22
8 0.035 0.11 0.032 0.09 0.21
9 0.025 0.09 0.024 0.08 0.20
10 (Large) 0.020 0.08 0.020 0.07 0.18

B. Probability of an information event

Ohybrid aPIN HOWR CAPIN VPIN
1 (Small) 0.74 031 011 0.41
2 071 033 0.12 0.44
3 0.69 034 0.12 0.44
4 0.67 035 0.12 0.45
5 0.65 036 0.14 0.45
6 0.63 036 0.14 045 N/A
7 0.62 038 0.15 0.46
8 0.59 038 0.17 0.46
9 0.56 039 0.18 0.46
10 (Large) 052 039 0.23 0.47
C. Liquidity trading

0

Ohybrid In ou s VPIN
1 (Small) 0.06 0.73 0.04 124
2 0.06 0.94 0.04 151
3 0.07 1.06 0.05 1.69
4 0.08 1.19 0.06 1.84
5 0.09 1.28 0.08 1.97
6 0.11 138 0.09 2.08 N/A
7 0.12 155 0.11 226
8 0.15 174 0.14 250
9 0.19 213 0.19 2.83
10 (Large) 0.29 2.64 0.33 342

Stocks are sorted into capitalization deciles annually. For all models, o = probability of an information event. For
the hybrid model, Mhybrid is the expected average lambda A(0,0) based on Equation (8). PIN, APIN, and VPIN
are the probabilities of informed trading estimated using the methodologies in Easley et al. (1996), Duarte and
Young (2009), and Easley, Lopez de Prado, and O’Hara (2012), respectively. AowR is the estimate of Kyle’s
lambda from Odders-White and Ready (2008). ohybrig and oy are the standard deviations of liquidity trading
from the hybrid and OWR models, respectively. e/u and (e+6n)/u are the ratios of the liquidity to informed
trading intensities from the PIN and APIN models, respectively.

model. For the PIN model, the opening quoted spread is the product of PIN
and the magnitude of the information, H — L. In this section, we assess how
time-series and cross-sectional variations in price impacts and quoted spreads
relate to the estimated composite measure from each model. For price impacts,
we use the three measures described in Section 2.3. Quoted spreads are the
time-weighted average proportional bid-ask spreads.

26 See Equation (11) of Easley et al. (1996), who assume p; =pp.
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Figure 9

The annual cross-sectional mean and the 25th and 75th percentiles of reduced-form price impacts, quoted
spreads, and composite information asymmetry measures

Five-minute price impacts are estimated daily and averaged annually for each stock-year for NYSE stocks from
1993 to 2012. The stock-year estimates of the cumulative impulse response and Ajpqraday are the medians of
daily estimates. Quoted spread is the time-weighted proportional bid-ask spread. Apypyig is the expected average
lambda 2(0,0) based on Equation (8). PIN, APIN, and VPIN are the probabilities of informed trading estimated
using the methodologies in Easley et al. (1996), Duarte and Young (2009), and Easley, Lépez de Prado, and
O’Hara (2012), respectively. Agwg is the estimate of Kyle’s lambda from Odders-White and Ready (2008).

Figure 9 plots the time series of the cross-sectional averages and interquartile
ranges of the price impact measures, the quoted spread, and the five composite
information asymmetry measures. Over the twenty year sample, price impacts
initially rose over the 1990s before falling dramatically following the turn of
the century, with the brief exception of the financial crisis. Quoted spreads have
also fallen over the sample period. The time series of the hybrid model expected
average lambda, Anyprig, and the magnitude of private information, «, exhibit
similar patterns (Figure 7). The OWR lambda also exhibits similar behavior.
PIN, APIN, and VPIN are much less variable over time.

Table 10 explores the time-series relationships across these measures more
formally. For each firm with at least five years of estimates, we calculate the
time-series correlations between the price impact or quoted spread measure
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Table 10
Time-series correlations of reduced-form and structural estimates

A. Average time-series correlations

5-minute Cum. impulse Quoted

price impact response iimraday spread

Ahybrid 0.641 0.702 0.584 0.619
PIN 0.297 0.327 0.238 0.346
AOWR 0.331 0.343 0.309 0.331
APIN 0.379 0.448 0.310 0.449
VPIN 0.513 0.520 0.407 0.441

B. t-statistics of paired t-tests of differences

5-minute Cum. impulse R Quoted

price impact response Aintraday spread
PIN 30.5%%* 34, 1k 30.7#%* 23.5%%%
AOWR 33.5%%% 39.9%%x 29.3##% 30.6%%*
APIN 24.3%#% 23,8 25.6%#* 15. 1%
VPIN 11.0%%* 15.7%%* 15.7%%* 13.7%%*

The table reports cross-sectional averages of the time-series correlation between reduced-form liquidity estimates
(each column) and the composite structural information asymmetry variables (each row). The reduced-form
liquidity variables are the 5-minute price impact, the cumulative impulse response estimated following Hasbrouck
(1991), an estimate of price impact (Ajniraday) Using a regression of 5-minute returns on the square root of signed
volume following Hasbrouck (2009) and Goyenko, Holden, and Trzcinka (2009), and the proportional quoted
spread. The time-series correlation is calculated for each firm with at least five years of observations. Panel A
reports the cross-sectional average of the time-series correlations. Panel B reports z-statistics of paired z-tests
of the time-series correlation of Apybrig With the variable in the column header relative to the corresponding
correlation for the composite variable in each row.

and each model-based composite measure. Table 10 reports the cross-sectional
average of these time-series correlations. For all three reduced-form price
impact estimates and for quoted spreads, Anypria is the most correlated composite
measure and is significantly more correlated than the other composite measures.
Using the approximately 1,600 firms with at least five years of estimates, paired
t-tests reject the nulls that the correlation with Apyprig €quals the correlations
with the other composite measures (panel B of Table 10).

We also explore how the composite measures relate cross-sectionally to the
price impact and quoted spread benchmarks. Table 11 reports cross-sectional
regressions of price impacts and quoted spreads on the composite information
asymmetry measures. We run univariate regressions as well as bivariate
regressions including Apyprig and another composite measure. The information
asymmetry measures are standardized to have unit standard deviations. In
univariate regressions, the reduced-form price impact measures and quoted
spreads are positively related to each of the information asymmetry measures.
Anybria generally explains the most (or second-most) cross-sectional variation in
price impacts and explains over a quarter of the variation in quoted spreads.?’
Perhaps more importantly, Anyiiig adds explanatory power to each of the other

For the univariate quoted spreads regressions, VPIN has the largest average RZ, but its coefficient estimate is
insignificant. This is because VPIN and quoted spreads are negatively correlated cross-sectionally over the first
5 years of the sample.
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Table 11

Fama and MacBeth (1973) cross-sectional regressions of price impacts and quoted spreads

A. 5-minute price impact

()] (@) (3) 4) (5) (6) @) ®) ()
Mhybrid 0.47%%* 0.39%** 0.48%+* 0.377%* 0.30**
9.10) (7.48) (8.58) (5.68) (2.52)
PIN 0.37%%%  0.25%*
9.37) (8.10)
AOWR 0.26%** —0.01
(5.25) (=0.70)
APIN 0.43%F*  (,30%**
(8.17) (7.85)
VPIN 0.41%F%  0.28**
(3.95) (2.30)
Constant  0.05 0.06 0.04 0.08 0.05 0.09 0.06 0.08 0.07
(0.25) (0.28) (0.20) 0.31) 0.24) (0.46) (0.33) (0.40) (0.36)
Obs 19,965 19,965 19,965 19,965 19,965 19,965 19,965 19,965 19,965
R2 0.317 0.200 0.400 0.097 0.320 0.255 0.421 0.356 0.474
B. Cumulative impulse response
(D 2 3) ) 5) ©) ()] ) )
Mhybrid 0.48%+* 0.42%+* 0.50*** 0.41%%* 0.36**
(4.34) (4.02) (4.23) (3.63) (2.57)
PIN 0.32%%%  (.20%%*
(5.28) (4.81)
AOWR 0.26%**  —0.03**
(3.32)  (-2.19
APIN 0.36%F%  0.23%F*
(7.22) (7.27)
VPIN 0.38%**  (.23%**
(5.71) (4.28)
Constant  0.07 0.08 0.05 0.12 0.07 0.07 0.04 0.07 0.05
(0.23) (0.27) 0.17) (0.35) (0.22) 0.27) (0.15) (0.27) (0.20)
Obs 19,965 19,965 19,965 19,965 19,965 19,965 19,965 19,965 19,965
R2 0.419 0.205 0.490 0.120 0.423 0.263 0.507 0.396 0.548

(continued)

composite measures regardless of the benchmark when comparing the bivariate
and univariate regressions. This is true for both the price impact benchmarks
and for quoted spreads.

The hybrid model parameters are estimated using a sample of prices and
order flows, so it is perhaps unsurprising that Anyprig captures reduced-form
price impacts well. However, this critique does not apply to quoted spreads,
which are not part of the data used in the estimation. Tables 10 and 11 show
that Apyprig also performs well vis-a-vis alternative composite measures when
quoted spreads are used as the benchmark.

Of course, there remains unexplained variation in both reduced-form price
impacts and quoted spreads. Some empirical work on information asymmetry
has aggregated various empirical proxies of information asymmetry to try to
capture the multifaceted nature of liquidity (e.g., Bharath, Pasquariello, and
Wu, 2009, Korajczyk and Sadka, 2008). That none of the composite measures,
including Anybria, completely explains price impacts or quoted spreads, lends
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Table 11
Continued
C. intraday
()] (@) 3 (C)) (5) (6) (@] ®) )
Ahybrid 0.35%+* 0.27*%* 0.35%** 0.23%F* 0.15
(12.90) (10.27) (13.53) (6.22) (1.27)
PIN 0.31%%*%  (.23%**
(5.50) 4.72)
AOWR 0.20%**  0.00
(7.16) (0.37)
APIN 0.41%F%  0.32%+*
(4.08) (3.51)
VPIN 0.35%*  0.30
(2.23) (1.38)
Constant —0.03 —0.00 —0.02 —0.02 —0.03 0.05 0.02 0.06 0.06
(=047) (-0.03) (-0.31) (—0.23) (—0.45) (0.50) (0.24) (0.75) (0.67)
Obs 19,965 19,965 19,965 19,965 19,965 19,965 19,965 19,965 19,965
R? 0.191 0.115 0.245 0.066 0.194 0.153 0.270 0.185 0.332

D. Quoted spread

(Y] 2 3) (€] ) (6) (@) (8) )
Mybria  0.42°% 0.34%%* 0.42%%% 0.31%% 0.34%*
(6.51) (5.80) (6.71) (4.58) (2.24)
PIN 0.37%%  0.27F*
697 (5.82)
AOWR 0.24%% 0,00
(432)  (—0.9)
APIN 0.44%%% (. 34%%
(11.32)  (10.42)
VPIN 0.19 0.06
(127)  (0.34)
Constant  0.10 0.09 0.07 0.13 0.10 0.08 0.06 0.15 0.13
039  (0.36)  (031)  (043) (038  (040)  (0.31)  (0.56)  (0.53)
Obs 19965 19965 19,965 19,965 19965 19965 19965 19,965 19,965
R2 0.257 0.204 0.353 0.081 0.259 0.279 0.390 0347 0.461

The dependent variables in panels A-D are the 5-minute price impact, the cumulative impulse response estimated
following Hasbrouck (1991), an estimate of price impact (%mraday) using a regression of 5-minute returns on the
square root of signed volume following Hasbrouck (2009) and Goyenko, Holden, and Trzcinka (2009), and the
proportional quoted spread, respectively. Each panel reports univariate and bivariate regressions. All variables
are standardized to have a unit standard deviation. The reported RZ is the time-series average R? from the cross-
sectional regressions. Standard errors are adjusted for serial correlation following Newey and West (1987) with
5 lags. z-statistics are in parentheses, and statistical significance is represented by * p <0.10, ** p <0.05, and
5% p <0.01.

credence to such aggregations. Our results suggest that Anybrig OF its underlying
structural parameters should be included when empirical researchers wish to
aggregate information asymmetry estimates.

5. Conclusion

We propose a model of informed trading that is a hybrid of the PIN and Kyle
models. Unlike the Kyle model, information events occur with probability less
than one like in the PIN model, and unlike the PIN model, informed orders are
endogenously determined like in the Kyle model. An important implication
of the model is that both returns and order flows are needed to identify
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information asymmetry parameters. The reason is that order flows depend on
market liquidity, which depends on information asymmetry. This is an indirect
dependence of order flows on information asymmetry that is countervailing to
the direct relation. This result suggests that measures of information asymmetry
based solely on order flows (like PIN) may be misspecified.

We estimate the hybrid model and provide several analyses that suggest
the estimates capture cross-sectional and time-series variation in information
asymmetry. We illustrate possible applications of our estimates: a new
methodology to detect information events and a corporate finance application.
Our model allows the econometrician to identify distinct components of
information asymmetry such as the probability and magnitude of potential
information events. We hope such refinements will prove useful to future finance
and accounting research.

Finally, we compare the parameter estimates to those from other structural
models and to price impacts and quoted spreads. While composite information
asymmetry measures from all of the models are positively correlated with
price impacts, the measure from the hybrid model exhibits higher time-
series correlations and incremental cross-sectional explanatory power for price
impacts. To a certain extent, this might be expected, since the measure from the
hybrid model is the expected average Kyle’s lambda, and Kyle’s lambda should
be highly correlated with price impacts. However, the measure from the Odders-
White and Ready (2008) model is also an estimate of a Kyle’s lambda, and it
is dominated by the hybrid model in explaining both time-series and cross-
sectional variation in price impacts. Moreover, the hybrid model measure is
also more correlated with quoted spreads than other measures in the time series
and adds explanatory power to each of the other measures in explaining the
cross-section of quoted spreads.

Appendix A. Proofs

The process Y described in the following lemma is a variation of a Brownian bridge. It differs from
a Brownian bridge in that the endpoint is not uniquely determined but instead is determined only
to lie in an interval: the lower tail (—oo, y1 ), the upper tail (yx, 00), or the middle region [y, yx ],
depending on whether there is an information event and whether the news is good or bad. Part (C)
of the lemma immediately follows from the preceding parts, because the probability (A3) is the
probability that Y1 ¢[yy, yx] calculated on the basis that ¥ is an F¥ -Brownian motion with zero
drift and standard deviation 0.

Lemma. LetN denote the standard normal distribution function. Let F¥ = {]—',Y |0 <t <1} denote
the filtration generated by the stochastic process Y defined by Yp=0 and

q(1,Y,,§5)

dy,= dt+dZ;. (Al)

Then the following are true:

(A) Y is an FY —Brownian motion with zero drift and standard deviation o .
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(B) With probability one,

E=landS=L = Yi<yL, (A2a)
§=0 = y=<Yi<ymu, (A2b)
t=landS=H = Yi>yH. (A2¢c)

(C) For each t < 1, the probability that £ =1 conditional on ]-'ty is

-7, —Y,
N(yL ’>+1—N<y” ’). (A3)
oa/1—t oA/1—t
|
Proof of Lemma
Set
Liy<y) ifs=L,
k(1,y,s)= Ly <y<yyy) ifs=0,
Ly>ypi ifs=H,
and, forr <1,
N(2L2) ifs=L,
Key,)= N (282 ) N (2L ) if s=0,
N("‘y” ifs=H.
o+/1—t

Define ok
Ly,
g(,,y,s)zw’
dy

for £ <1. Then (1—1)o2€(t,y,s)=q(t,y,s) for t < 1, and the stochastic differential equation (A1)
can be written as
dY, =0 4(t,Y,,£S)dr +dZ, (Ad)

The process Y is an example of a Doob h-transform—see Rogers and Williams (2000).

To put (A4) in a more standard form, define the two-dimensional process I?, =(£S,Y;) with
random initial condition 1?0 =(£S,0), and augment (A4) with the equation d(£ §)=0. The existence
of a unique strong solution Y to this enlarged system follows from Lipschitz and growth conditions
satisfied by £. See Karatzas and Shreve (1988, theorem 5.2.9).

The uniqueness in distribution of weak solutions of stochastic differential equations (Karatzas
and Shreve, 1988, theorem 5.3.10) implies that we can demonstrate Properties (A) and (B) by
exhibiting a weak solution for which they hold. To construct such a weak solution, define a new
measure Q on F; using k(1,Z1,£S5)/k(0,0,&S) as the Radon-Nikodym derivative. The definition
of k implies that k(¢, Z; £ S) is the F;—conditional expectation of the indicator function k(1, Z;,£S),
so k(t,Z,,£S) is a martingale on the filtration F. By Girsanov’s theorem, the process Z* defined
by Z§=0 and

dZ}=—o2e(t,Z,,£S)dt +dZ,

is a Brownian motion (with zero drift and standard deviation o) on the filtration F relative to Q.
It follows that Z is a weak solution of (A4) relative to the Brownian motion Z* on the filtered
probability space (£2,F, Q).
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To establish property (A) for the weak solution, we need to show that Z is a Brownian motion
on (£2,G,Q). Because Z is a Brownian motion on (£2,G,P), it suffices to show that Q=P when

both are restricted to Gy. This holds if for all t{ <--- <, <1 and all Borel B we have

IP’((Z,I,...,Z,,,)E B):Q((Z,1 voos Ziy)EB).

The right-hand side of (AS) equals

E|:k(1,Z|,€S)

O 0ES) 1B<z,1,.u,z,n)],

which can be represented as the following sum:

k(1,Z1,6S5) -
apLE[mlB(Ztls~~~sZtn)‘ES—Lj|
k(1,Z1,§5) -
+(1—(¥)E|:m13(zt] ,---,Ztn)|§—0i|
k(1,7,,§5) _
+(¥PHE|:WIB(Zt] ,,,,,Z,n)|§S—H:|.

Using the definitions of y;, yy, and k, this equals

E[Liz, <y 118(Zeysoo s Z1y) |ES=L]

+E[1{)*L§ZI§)=L}IB(ZII a---sZtn)‘%':O]

+E[Lz, 5y 18(Zey s Z4) |ES=H].

(A5)

The P-independence of Z and &S imply that the conditional expectations equal the unconditional

expectations, so adding the three terms gives

E[18(Zy,..... Z),))|=P(Zy..... Z, ) EB).

This completes the proof that Z is a Brownian motion on (£2,G, Q).
To establish property (B) for the weak solution of (A4), we need to show that

QZi<yL1§S=L)=1,
QyL=Z1=ynl§=0)=1,
Q(Z1>yn)1ES=H)=1.
Consider (A6a). We have

k(1,Z1,£S5)

@(§S=L)=E[ %(0.0.65) 1(5S=L):|

k(1,Z1,L)
E| ————— 1=
[k(o,o,u ‘“‘“]

=E[liz, <y Mes=13] /P

=opL,
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using the definition of k for the third equality and the P-independence of Z and &S for the last
equality. By similar reasoning,

k(1,Z1,ES
oz <yL,SS=L>=E[w }

1 o lies=
%(0,0,£5) {Zy <y} HES=L}

k(1,Z,L)
E| —1 1ges=
[k(0,0,L) {Zy<y} (5S-L}]

=E[liz, <y les=13] /apL

=apr.
Thus,
QZy <yL.§S=L) apL
QZy <y |ES=L)=— —"—"——=——=]1.
e QES=L) ap
Conditions (A6b) and (A6c) can be verified by the same logic. |

Proof of Theorem 1
It is explained in the text why the equilibrium condition (1) holds. It remains to show that

the strategy (5) is optimal for the informed trader. Let G e {G; |0 <t <T} denote the completion
of the filtration generated by Z, form the enlarged filtration with o—fields G; Vo (§S), and let

&ef {F: |0 <t < T} denote the completion of the enlarged filtration. The filtration [F represents the
informed trader’s information.
Define

J(,y, L)y==LO—=y)y>y y tHO—=yu)ly>yy1»
J(1,y,00=—L(yL =) y<y y + HO =Yy liy>yy s

J(lyy, H)=_L(yL _y)l(y<yL}+H(yH _y)](y<yH)-

For t<1 and s€{L,0,H}, set J(¢,y,s)=E[J(t,Z1,5)|Z;=y]. Then J(t,Z;,£S) is an F-
martingale, so it has zero drift. From It6’s formula, its drift is

9 J@t,Z g5)+1 2 92 J(t,Z,,ES)
- s Lty =0 " — Lty .
at ! 20 972 !

Equating this to zero, Itd’s formula implies
1
J(1,Y1,§S)=J(O,0,§S)+f dJ(,Y;,£S)
0

0.0, f 3J(, Y,,sS)

Therefore,

E[J(1,Y;,£S)—J(0,0,£5)]= E/ M (A7)

To calculate dJ(¢,y,s)/dy, use the fact that, by independent increments,
J@t,y,9)=EBlJ(t, Z1,5)| Z=y]1=BlJ(t,Z1 = Z; +Y,5)]

to obtain
J(t.y.5) _

E aJ(tZ Zi+y,s)
3y 3y » 41 t+tY,8) |-
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Now, note that, for any real number a excluding the kinks at y;, —y and yy —y,
a
a*yJ(lya"'y:L)=_L1{a>nyy)+H1(a>yH—y)9
a
@J(lsa*ﬂ)’so):l‘1{a<yL7y)+H1(a>yH7y)~

9
5](l,a+y,H):L1{u<yL,y) 7H1(“<)’H*}')‘

Therefore,

aJ(t,y,L - -
@y )=_LN(y YL )+HN(y yy)y
dy o1—t o1—t

aJ — —
(t,y,O):LN< yL—y )+HN( y—=YH )
dy o/1—t o1-t

3J(t,y, H — -
Iy, )=LN< yL y)_HN(yH y)‘
ay o 1—t o+/1—t

Now, the definition (6) gives us

aJ(t,y,s)
D b y)—s
ay

for all s € {L,0, H}. Substituting this into (A7) gives us

1
E[/(, Yl,SS)—J(O,O,SS)]=E/ [p(t,Y)—ES]dY;. (A3)
0

The “no doubling strategies” condition implies that [ pdZ is a martingale, so the right-hand side
of this equals

1
E/O [p(t,Y;)—£S]6,dt.

Rearranging produces
1
E/ [6S—p(1, Y16, dt=E[J(0,0,§$)—J (1. Y1, H] <E[J (0,0, )],
0

using the factthat J(1,y,s) > Oforall (y,s) for the inequality. Thus, E[J (0,0, & S)] is an upper bound
on the expected profit, and the bound is achieved if and only if J(1,Y7,£S5)=0 with probability
one. By the definition of J(1,y,s), this is equivalent to Y| <y, with probability one when £S=L,
yr <Y1 <ym with probability one when &£ =0, and Y; > yy with probability one when £ S=H. By
part (B) of the proposition, the strategy (5) is therefore optimal. |

Proof of Theorem 2
By It6’s formula and the fact that (dY)?=(dZ)? =o2dt, we have

1
dp(t,Y;)= <Pr(tv Y+ Eczpyy(ta Yt)) dt+py(t,Y)dYs,

where we use subscripts to denote partial derivatives. Both Y and p(z,Y;) are martingales with
respect to the market makers” information, so the drift term must be zero. That also can be verified
by direct calculation of the partial derivatives, using the formula (6) for p(t, y). Thus,

dp(@.Y)=py(.Y)dY;.

A direct calculation based on the formula (6) for p(t, y) shows that p, (¢, y)=A(z, y) defined in (7).
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To see that A(¢, Y;) is a martingale for ¢ € [0, 1), with respect to market makers’ information, we
can calculate, fort <u <1,
L © vy
E[A(u,Y,)|Y;=yl=— / n(
W=y o1—u J-oo \o/1—u

)f(y’lu—t,y)dy’

L /“’n< yH=y
ol—u Joo \oa1—u
where f(-|7,y) denotes the normal density function with mean y and variance o2t. A

straightforward calculation shows that this equals A(z, y). For example, to evaluate the first term,
use the fact that

)f(y’lu—t,y)dy',

¥n<ﬂ7—y,>ﬂy,‘u_t )
o1—u o1—u ’

= ! Il( LY )X !
o/1=1t \o/1=1) 2m02(1—u)u—1)/(1—1)

~ 11 ,A=wy+@=ny.\?
exp (2(1—u)(u—t)02>(y [ ) ’

1 n( yL—y)
o1—t oJ/1=1t)’

because the other factors constitute a normal density function. ]

which integrates to

Appendix B. Hybrid Model Likelihood Function

Assume the trading period [0, 1] corresponds to a day. This implies that any private information
becomes public before trading opens on the following day.28 ‘We can estimate the model parameters
using intraday price and order flow information. If we further assume that the model parameters
are stable over time, then the price and order flow information from multiple days can be merged
to estimate the parameters with greater precision.

To obtain stationarity in returns, assume that the possible signal realizations on each day are
proportional to the observed opening price. Specifically, on each day i, assume that the possible
signal realizations are

Li=2(pr— Dk Py,
H;=2pp« Py,

where P;o denotes the opening price on day i and where « is a parameter to estimated. With this
specification, the signal on each day has a zero mean, and (H; —L;)/ Pio=2«. Thus, x measures
the signal magnitude. Denote the pricing function on day i (as specified in Theorem 1) by p;(t,y),
and let p(t, y) denote the pricing function when the possible signal realizations are L=2(pr — 1)k
and H=2pr«. Then p;(t,y)/ Pio=p(t,y).

In contrast to Odders-White and Ready (2008), our estimation does not use overnight returns. In our theoretical
model, private information that is made public at the close of trading is incorporated into prices before trading
ends (convergence to strong-form efficiency). Thus, overnight returns in our model are due to arrival of new
public information, which does not aid in estimating the model.
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The price at time ¢ on day i is Vi, + p;(t,Yi), and in particular the opening price is P;o= Vo, so
the gross return through time ¢ is
ﬁ Vie pit.Yi1) Vi

=—+—=—+p(1,Y; Bl
Po Vio Po Vio P, Yir). (BI)

Assume
dVi

Vit

=8dB;;
for a constant § and a Brownian motion B;, so we have

Bt o1, Yigy vt B2
Pig
Assume the price and order imbalance are observed at times 71, ..., .1 each day with #4; =1
being the close and the other times being equally spaced: ¢; = j A for A >0 and j <k.Let P;; denote
the observed price and Y;; the observed order imbalance at time ¢; on date i. Let I denote the
(k+1)-dimensional vector defined by I'j=t¢; /A for j=1,...,k+1. Let ¥ denote the (k+1) x (k+1)
matrix defined by ;i =min(T";,I" /)
Let U; denote the vector of log pricing differences as defined in (10). The density function of
(P;1/Pio,-.., P; k41 / P;o) conditional on Y; is
k+1
f(Uil,---Uz'.1(4r1)1372-"=1 Y,
where f denotes the multivariate normal density function with mean vector —(82A /2)I" and
covariance matrix 82 A X. Furthermore, on each day i, the vector Y;i =(Yi sy ... Yig )’ is normally
distributed with mean 0 and covariance matrix 62 A Y.
Let £; denote the log-likelihood function for day i. Dropping terms that do not depend on the
parameters, we have

1
=(k+1)logo + A Y/ =71+ (k+1)logs

1 24\ s
* 37 A (U,-+TF) (U,+—r> ZU,,

Using the facts that "X~ =(0,...,0,1) and I"S~'"=1/A, this simplifies to

1
—Li=(k+Dlogo+ > Y/ =7 +(k+ Dlogs

k+1
U,E_]U,+ Ui, s +ZU,]

+
282A

Hence, the log-likelihood function £ for an observation period of n days satisfies (9).
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